CN0363

Table of contents

CN0363	2
CN0363 DMA Sequencer	з
Files	з
Signal and Interface Pins	з
Theory of Operation	5
More Information	6
CN0363 Phase Data Sync	6
Files	6
Signal and Interface Pins	6
Theory of Operation	7
More Information	8

CN0363

CN0363 library comprises two IPs:

- CN0363 DMA Sequencer
- CN0363 Phase Data Sync

CN0363 DMA Sequencer core acts as a link between the CN0363 processing pipeline and the connected DMA controller. CN0363 Phase Data Sync assembles the raw ADC sample data into a 24-bit word and convert it to two's complement.

CN0363 DMA Sequencer

The CN0363 Sequencer FPGA Peripheral is part of the CN0363 HDL project and is responsible to sequence the various data channels to the DMA.

Files

	phase	dma_wr	
	data	overflow	—
	data_filtered	dma_wr_sync	_
	i_q	processing_resetn	_
	i_q_filtered		
_	clk		
_	resetn		
_	channel_enable		

cn0363_dma_sequencer

Name	Description
library/cn0363/cn0363_dma_sequencer/ cn0363_dma_sequencer.v	Verilog source for the peripheral.
library/cn0363/cn0363_dma_sequencer/ cn0363_dma_sequencer_ip.tcl	TCL script to generate the Vivado IP-integrator project for the peripheral.

Signal and Interface Pins

phase

AXI-Stream slave - Phase data channel.

Physical Port	Logical Port	Direction	Dependency
phase_valid	TVALID	in	
phase_ready	TREADY	out	
phase	TDATA	in [31:0]	

data

AXI-Stream slave - Sample data channel.

Physical Port	Logical Port	Direction	Dependency
data_valid	TVALID	in	
data_ready	TREADY	out	

Physical Port	Logical Port	Direction	Dependency
data	TDATA	in [23:0]	

data_filtered

AXI-Stream slave - Filtered sample data channel.

Physical Port	Logical Port	Direction	Dependency
data_filtered_valid	TVALID	in	
data_filtered_ready	TREADY	out	
data_filtered	TDATA	in [31:0]	

i_q

AXI-Stream slave - Demodulated I/Q sample data channel.

Physical Port	Logical Port	Direction	Dependency
i_q_valid	TVALID	in	
i_q_ready	TREADY	out	
(i_q)	TDATA	in [31:0]	

i_q_filtered

AXI-Stream slave - Filtered demodulated I/Q sample data channel.

Physical Port	Logical Port	Direction	Dependency
i_q_filtered_valid	TVALID	in	
i_q_filtered_ready	TREADY	out	
i_q_filtered	TDATA	in [31:0]	

dma_wr

FIFO Write Interface master - Low-level SPI bus interface that is controlled by peripheral.

Physical Port	Logical Port	Direction	Dependency
dma_wr_en	EN	out	
dma_wr_data	DATA	out [31:0]	
dma_wr_overflow	OVERFLOW	in	
dma_wr_xfer_req	XFER_REQ	in	

Ports

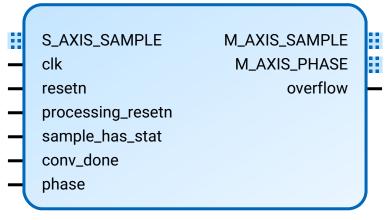
on	
----	--

Physical Port	Direction	Dependency	Description
			Clock - All other signals are synchronous to this clock. Bus
clk	in		<pre>phase_data_data_filtered_i_q_i_q_filtered_dma_wr</pre>
			synchronous to this clock domain.
resetn	in		Synchronous active low reset - Resets the internal state machine of the core.
overflow	out		Output - The overflow signal is asserted if a overflow on the DMA interface is detected.
dma_wr_sync	out		
channel_enable	in [13:0]		Input - Data channel enable sequencer output enable.
			Output - Reset signal for the processing pipeline Bus
processing_resetn	out	<pre>phase_data_data_filtered_i_q_i_q_filtered_dma_wr</pre>	
			synchronous to this reset signal.

Theory of Operation

The CN0363 DMA sequencer core acts as a link between the CN0363 processing pipeline and the connected DMA controller. On one side it accepts data from the processing pipeline and on the other side it sends the data to the DMA controller. The core is only active when the DMA controller signals that it is waiting for data, when it is inactive it also asserts the processing_resetn signal to keep the processing pipeline in reset. Since the DMA is running at a much faster clock than the output data rate from the processing pipeline the different channels are time-division-multiplexed and send one by one to the DMA controller over the dma_wr interface.

When active the core cycles through the input channels in the following order.


- 1. phase (Reference channel)
- 2. data (Reference channel)
- 3. data_filtered (Reference channel)
- 4. i_q, I component (Reference channel)
- 5. i_q, Q component (Reference channel)
- 6. i_q_filtered, I component (Reference channel)
- 7. i_q_filtered, Q component (Reference channel)
- 8. phase (Sample channel)
- 9. data (Sample channel)
- 10. data_filtered (Sample channel)
- 11. i_q, I component (Sample channel)
- 12. i_q, Q component (Sample channel)
- 13. i_q_filtered, I component (Sample channel)
- 14. i_q_filtered, Q component (Sample channel)

Each of these has a corresponding bit in the channel_enable and only if the bit is set the channel is sent to the dma_wr interface, otherwise it is discarded. This allows an application to select which data channels it wants to capture.

More Information

CN0363 HDL project

CN0363 Phase Data Sync

cn0363_phase_data_sync

The CN0363 Phase Data Sync FPGA Peripheral is part of the <u>EVAL-CN0363-PMDZ HDL reference design</u> and is responsible for preparing the ADC conversion result data and aligning it with the phase and feeding both to the processing pipeline.

Files

Name	Description
/library/cn0363/cn0363_phase_data_sync/ cn0363_phase_data_sync.v	Verilog source for the peripheral.
/library/cn0363/cn0363_phase_data_sync/ cn0363_phase_data_sync_ip.tcl	TCL script to generate the Vivado IP-integrator project for the peripheral.

Signal and Interface Pins

S_AXIS_SAMPLE

AXI-Stream slave - Input sample data stream

Physical Port	Logical Port	Direction	Dependency
<pre>s_axis_sample_valid</pre>	TVALID	in	
<pre>s_axis_sample_ready</pre>	TREADY	out	
<pre>s_axis_sample_data</pre>	TDATA	in [7:0]	

M_AXIS_SAMPLE

AXI-Stream master - Output sample data stream

Physical Port	Logical Port	Direction	Dependency
---------------	--------------	-----------	------------

Physical Port	Logical Port Direction		Dependency
<pre>m_axis_sample_valid</pre>	TVALID	out	
(m_axis_sample_ready)	TREADY	in	
<pre>m_axis_sample_data</pre>	TDATA	out [23:0]	

M_AXIS_PHASE

AXI-Stream master - Output phase data stream

Physical Port	Logical Port	Direction	Dependency
(m_axis_phase_valid)	TVALID	out	
<pre>m_axis_phase_ready</pre>	TREADY	in	
m_axis_phase_data	TDATA	out [31:0]	

Ports

Physical Port	Direction	Dependency	Description
clk	in		Clock - All other signals are synchronous to this clock. Bus S_AXIS_SAMPLE_M_AXIS_SAMPLE_M_AXIS_PHASE is synchronous to this clock domain.
resetn	in		Synchronous active low reset - Resets the internal state machine of the core. Bus S_AXIS_SAMPLE_M_AXIS_SAMPLE_M_AXIS_PHASE is synchronous to this reset signal.
(processing_resetn)	in		Synchronous active low reset - Indicator that the processing pipeline is in reset.
<pre>sample_has_stat</pre>	in		Input - Whether the incoming data on S_AXIS_SAMPLE has the STAT register appended.
conv_done	in		Input - Conversion done signal from the ADC.
phase	in [31:0]		Input - Current excitation signal phase.
overflow	out		Input - The overflow signal is asserted if a new sample arrives before the previous one has been consumed.

Theory of Operation

The CN0363 Phase Data Sync FPGA Peripheral takes the raw ADC sample data read by a SPI controller from the ADC on the S_AXIS_SAMPLE stream. The data is assembled into 24-bit word and converted from offset binary to two's complement signed.

When a rising edge is detected on the conv_done signal the core takes a snapshot of the phase input signal. This data will be assumed to the phase that belongs to the next incoming data sample on the S_AXIS_SAMPLE. The data is aligned with the corresponding phase data and both are send out on the $M_{AXIS}SAMPLE$ and $M_{AXIS}PHASE$ stream.

If the sample_has_stat signal is asserted the core will receive 32-bit instead of 24-bit per sample on the S_AXIS_SAMPLE stream. The last 8-bit are assumed to contain the STAT register of the ADC, which among other things contains the information about which channel the ADC result belongs to. This information can be used to detect and fix channel swaps. If sample_has_stat is not asserted the core assumes that no channel swaps happen and the whole pipeline is always running fast enough to accept a sample before the next one is ready.

If processing_resetn is asserted the processing pipeline is assumed to be in reset and incapable of accepting new samples and when a new sample arrives at the (S_AXIS_SAMPLE) port a overflow condition is generated. The signal also resets the channel swap detection logic and makes sure that the next sample that is inserted into the processing pipeline after the reset belongs to the first channel.

More Information

CN0363 HDL project