
User Information for bqpd

Introduction
Welcome to bqpd! This is a package of Fortran 77 subroutines for solving quadratic
programming (QP) problems in the form

minimize f(x) = cTx + 1
2
xTGx

subject to l ≤ [I : A]Tx ≤ u

where x and c are n-vectors, G is a symmetric n × n matrix (the Hessian matrix),
and A is an n × m matrix. Thus the first n constraints are simple bounds, and
the remaining m constraints are general linear constraints whose normal vectors are
columns of A.

More specifically, the package is designed to find a Kuhn–Tucker (KT) point of
this problem (see for example R. Fletcher, Practical Methods of Optimization, 2nd.
Edition, John Wiley, 1987, for background information). If G is positive semi-definite
then the KT point is a global solution, else usually a local solution. The method
may also be used efficiently to solve a linear programming (LP) problem (G = 0).
A recursive form of a null-space active set method is used, using Wolfe’s method
to resolve degeneracy. This would guarantee termination if exact arithmetic could
be used. Matrix information is made available and processed by calls to external
subroutines. Details of these are given in an auxiliary file named either denseL.f or
sparseL.f.

The bqpd package provides a number of features which make for flexible use, and
reliable and efficient solution. These include

• indefinite Hessian allowed

• two-sided simple bounds and general constraints

• sparse or dense format for c and A

• sparse or dense matrix algebra modules

• cold/warm/hot starts

• steepest-edge pivoting

• automatic scaling option

• efficient as an LP solver

• effective in both single and double precision

• new features for numerical stability.

1



Using bqpd

The master subroutine is stored in the file bqpd.f, and other auxiliary files store
subroutines used by bqpd.f. To use bqpd, a routine which drives (i.e. calls) bqpd

must be supplied. Examples of driver routines are supplied which will drive bqpd.f

from a data file. To use bqpd with dense matrix storage, the driver program ddd.f

(or the user’s driver program) and the files
bqpd.f, denseL.f, denseA.f, auxil.f, util.f

must be compiled and linked. To use bqpd with sparse matrix storage, the driver
program sss.f and the files

bqpd.f, sparseL.f, sparseA.f, auxil.f, util.f
must be compiled and linked. The combination of denseL.f and sparseA.f is also
allowed. The subroutines are written as though for single precision (r4) usage. Users
with SUN equipment can obtain double precision (r8) arithmetic by compiling with
the -r8 flag. Other users should globally change all occurrences of the word REAL to
double precision and .E to .D in all the files supplied. It is also recommended to
change DOUBLE PRECISION to real*16 (or similar) throughout, whenever your sys-
tem supports quadruple precision. In this case it is advisable (although probably not
imperative) to change the use of dble(.) to some suitable function for conversion
to real*16 type. In SUN Fortran the appropriate function is qext(.). Changing
from single to double precision is recommended for large or ill-conditioned problems.
IT IS IMPORTANT TO SET THE DEFAULT TOLERANCES (around line 1175 of
bqpd.f) TO MATCH THE PRECISION BEING USED.

Data structures for specifying the QP problem
The vectors x, l and u are stored as dense vectors in the usual Fortran 77 form.
Equality constraints are designated by having li = ui. The matrix [c : A] may
be stored in either dense or sparse format. The dense format is the conventional
Fortran 77 storage scheme for a matrix, that is by columns, with a possible gap
between each column. The ‘stride’ between columns is stored in the parameter la of
bqpd.f (set la to n for no gap between the columns).

The sparse format is explained in the header of file sparseA.f. It may be illus-
trated for the avgas test problem, for which n = 8, m = 10,

[c : A] =



0 −1 −1 2 5
−2 −1 −1 1 1
−1 −1 −1 1 3
−3 −1 −1 −1
−2 −1 −1 −3
−4 −1 −1 −3 −3
−3 −1 −1 −1 −1
−5 −1 −1 −5 −2


,

lT = (0, 0, 0, 0, 0, 0, 0, 0,−1,−1,−1,−1,−2,−2, 0, 0, 0, 0)

2



and
uT = (1, 1, 1, 1, 1, 1, 1, 1,∞,∞,∞,∞,∞,∞,∞,∞,∞,∞).

In sparse format, the nonzero elements of [c, A] would be stored in the vector

a = (−2,−1,−3,−2,−4,−3,−5;−1,−1;−1,−1;−1,−1;−1,−1;−1,−1,−1,−1; . . .

. . .− 1,−1,−1,−1; 2, 1,−1; 5, 3,−3,−1; 1,−1,−3,−5; 1,−3,−5)

and the indexing information in the vector la(0:*) would be

(38 | 2, 3, 4, 5, 6, 7, 8; 1, 2; 3, 4; 5, 6; 7, 8; 1, 3, 5, 7; . . .

. . . 2, 4, 6, 8; 1, 3, 7; 1, 3, 5, 7; 2, 4, 6, 8; 2, 6, 8 | 1, 8, 10, 12, 14, 16, 20, 24, 27, 31, 35, 38).

Data files for the avgas problem, suitable for dense and sparse formats respectively,
are supplied in the files avgas.d and avgas.s.

The Hessian matrix G is supplied indirectly to bqpd.f by means of a user sub-
routine gdotx which calculates the vector v = Gx from a given vector x. The format
of this subroutine is explained in the header to the file bqpd.f. Information for use
with gdotx is supplied to the subroutine bqpd via the parameters ws and lws. Thus
the user is free to specify G in whatever way is most convenient.

Setting and Interpreting the Parameters of bqpd
The definition of the parameters of bqpd is explained in the header to the file bqpd.f.
Most of this is straightforward but some further explanation of how to interpret the
contents of the parameters ls and r may be helpful. This is done by reference to the
avgas test problem above, the solution of which is

xT = (0, 1, 3
4
, 1

4
, 1

2
, 1

4
, 3

4
, 0).

In examining the outcome of bqpd, we first inspect the resulting vector

ls = (8, 15,−2, 9, 10, 16, 17, 13, 18, 4, 11,−3, 5, 14,−7, 12, 6, 1)

and the parameter values k = 0, peq = 0, lp(1) = 1 and lp(2) = 9, which determine
how ls is partitioned. We recall that constraint indices in the range 1:8 (that is 1:n)
refer to simple bounds, and those in the range 9:18 to general constraints. We deduce
that there are no active equality constraints or pseudo-bounds, since the ranges 1:peq
and peq+1:lp(1)–1 are empty. (Had peq been say 2, it would be deduced from
ls that constraints 8 and 15 were active equality constraints.) Thus the active set
constraints at the solution are those in positions 1:8 (that is lp(1):n–k) of ls. The
negative sign on ls(3) = −2 indicates that the upper bound of constraint 2 (that
is x2 ≤ 1) is active. Constraint indices in positions 9:18 (that is lp(2):n+m) of ls
determine the inactive constraints, or more precisely the constraints not in the active
set. The sign of these indices indicates which bound is closest to being active.

3



The contents of the vector

r = (0, 5
6
, 1

4
, 1

4
, 1

2
, 1

4
, 1

4
, 5

3
, 5

2
, 5

3
, 1

4
, 1

4
, 11

8
, 1

2
, 17

12
, 5

24
, 4

3
, 1

4
)

give the multipliers of the active constraints and the residuals of the inactive con-
straints, stored in the natural ordering. Thus r(2) = 5

6
indicates that the multiplier

of the constraint x2 ≤ 1 is 5
6
, since this constraint is in the active set. Also, since con-

straint −7 is an inactive constraint, the value r(7) = 1
4

indicates that the residual of
this constraint, measured from its upper bound, is 1

4
. Likewise the residual, or slack,

in constraint 18, which is also inactive, is 1
4
, measured from its lower bound. The sign

convention for r is that its elements are always nonnegative at a KT point (except
possibly for multipliers of equality constraints). Note that constraint 1, which is not
in the active set, has a residual r(1) = 0, indicating that it is active but degenerate.

Post-processing with bqpd

bqpd is a null-space method, for which we shall follow the notation of Chapter 10.1
of Practical Methods of Optimization referenced above. The matrix V is made up of
unit vectors as in Equation (10.1.21), chosen so as to keep the null-space matrix Z
well-conditioned. The indices of the unit vectors are stored in positions ll+1:ll+k
of the vector lws. Operations with Z or ZT can be implemented by making solves
with the basis matrix B = [A : V ]. Subroutines fbsub and tfbsub which enable this
to be done are provided with a common interface by both denseL.f and sparseL.f,
and are documented in the headers to these subroutines.

It may also be required to carry out post-processing using the reduced Hessian
matrix ZTGZ at the solution. In bqpd the Choleski factor R, given by ZTGZ = RTR
is stored starting at location kk+1 of the vector ws. Utilities to perform solves with
the reduced Hessian are provided by subroutines rsol and rtsol in the file util.f.
The data structure of R and the mode of use of these subroutines is described in their
headers. Note that the reduced Hessian is always stored in dense format, irrespective
of whether a dense or sparse format is used for storage of A or factors of B. A
consequence of this is that bqpd becomes inefficient if the dimension k of the null-
space becomes very large.

The parameters kk and ll in the above description are those set by the user in
common/wsc/ (see the header to bqpd).

R. Fletcher, April 1998

4


