import math import numpy as np import scipy.constants #Initialization of the natural constants, adapted from the SMILEI tutorials lambda0 = 0.8e-6 #Plasma Wavelength in m c = scipy.constants.c #m/s omega0 = 2*math.pi*c/lambda0 #reference angular frequency in rad/s eps0 = scipy.constants.epsilon_0 #F/m = As/(Vm) = C/(Vm) e = scipy.constants.e me = scipy.constants.m_e ncrit = eps0*omega0**2*me/e**2 #critical number density for the plasma c_over_omega0 = lambda0/2./math.pi um = 1.e-6/c_over_omega0 #Definition of Mesh. patches = [16, 4] dt = 0.1 #Constants for the plasma n0 = 1e19/1e-6 rampc0 = 2*math.pi * c * math.sqrt(me * eps0)/e nf = n0 #Boundary Conditions and other Corrections EM_boundary_conditions = [["silver-muller", "silver-muller"],["buneman", "buneman"],] use_BTIS3_interpolation = True Main( geometry = "AMcylindrical", interpolation_order = 2, number_of_AM = 1, number_of_cells = [1408, 532], grid_length = [59.71*um, 22.54*um], simulation_time = 1000, timestep_over_CFL = 0.9, #timestep = dt, number_of_patches = patches, EM_boundary_conditions = [["silver-muller"],["PML"],], number_of_pml_cells = [[0,0],[20,20]], solve_poisson = False, print_every = 11, use_BTIS3_interpolation = use_BTIS3_interpolation, reference_angular_frequency_SI = omega0, ) MovingWindow( time_start = 30.*um,#So that it starts earlier and will not clash into the boundaries. #velocity_x = math.sqrt(1-(omegap/omega0)**2), #eigentlich wird das mit c multiploitziert, hier wird aber ein normalisierter Wert erwartet, darum /c velocity_x = 1, )