forked from explosion/thinc
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
719 lines (585 loc) · 21.7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
import contextlib
import functools
import inspect
import os
import platform
import random
import tempfile
import threading
from contextvars import ContextVar
from dataclasses import dataclass
from typing import (
Any,
Callable,
Dict,
List,
Mapping,
Optional,
Sequence,
Tuple,
TypeVar,
Union,
cast,
)
import numpy
from packaging.version import Version
try:
from pydantic.v1 import ValidationError, create_model
except ImportError:
from pydantic import ValidationError, create_model # type: ignore
from wasabi import table
from .compat import (
cupy,
cupy_from_dlpack,
has_cupy,
has_cupy_gpu,
has_gpu,
has_mxnet,
has_tensorflow,
has_torch,
has_torch_cuda_gpu,
has_torch_mps,
)
from .compat import mxnet as mx
from .compat import tensorflow as tf
from .compat import torch
from .compat import ivy
DATA_VALIDATION: ContextVar[bool] = ContextVar("DATA_VALIDATION", default=False)
from typing import TYPE_CHECKING
from . import types # noqa: E402
from .types import ArgsKwargs, ArrayXd, FloatsXd, IntsXd, Padded, Ragged # noqa: E402
if TYPE_CHECKING:
from .api import Ops
def get_torch_default_device() -> "torch.device":
if torch is None:
raise ValueError("Cannot get default Torch device when Torch is not available.")
from .backends import get_current_ops
from .backends.cupy_ops import CupyOps
from .backends.mps_ops import MPSOps
ops = get_current_ops()
if isinstance(ops, CupyOps):
device_id = torch.cuda.current_device()
return torch.device(f"cuda:{device_id}")
elif isinstance(ops, MPSOps):
return torch.device("mps")
return torch.device("cpu")
def get_array_module(arr): # pragma: no cover
if is_numpy_array(arr):
return numpy
elif is_cupy_array(arr):
return cupy
else:
raise ValueError(
"Only numpy and cupy arrays are supported"
f", but found {type(arr)} instead. If "
"get_array_module module wasn't called "
"directly, this might indicate a bug in Thinc."
)
def gpu_is_available():
return has_gpu
def fix_random_seed(seed: int = 0) -> None: # pragma: no cover
"""Set the random seed across random, numpy.random and cupy.random."""
random.seed(seed)
numpy.random.seed(seed)
if has_torch:
torch.manual_seed(seed)
if has_cupy_gpu:
cupy.random.seed(seed)
if has_torch and has_torch_cuda_gpu:
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def is_xp_array(obj: Any) -> bool:
"""Check whether an object is a numpy or cupy array."""
return is_numpy_array(obj) or is_cupy_array(obj)
def is_cupy_array(obj: Any) -> bool: # pragma: no cover
"""Check whether an object is a cupy array."""
if not has_cupy:
return False
elif isinstance(obj, cupy.ndarray):
return True
else:
return False
def is_numpy_array(obj: Any) -> bool:
"""Check whether an object is a numpy array."""
if isinstance(obj, numpy.ndarray):
return True
else:
return False
def is_torch_array(obj: Any) -> bool: # pragma: no cover
if torch is None:
return False
elif isinstance(obj, torch.Tensor):
return True
else:
return False
def is_torch_cuda_array(obj: Any) -> bool: # pragma: no cover
return is_torch_array(obj) and obj.is_cuda
def is_torch_gpu_array(obj: Any) -> bool: # pragma: no cover
return is_torch_cuda_array(obj) or is_torch_mps_array(obj)
def is_torch_mps_array(obj: Any) -> bool: # pragma: no cover
return is_torch_array(obj) and hasattr(obj, "is_mps") and obj.is_mps
def is_tensorflow_array(obj: Any) -> bool: # pragma: no cover
if not has_tensorflow:
return False
elif isinstance(obj, tf.Tensor):
return True
else:
return False
def is_tensorflow_gpu_array(obj: Any) -> bool: # pragma: no cover
return is_tensorflow_array(obj) and "GPU:" in obj.device
def is_mxnet_array(obj: Any) -> bool: # pragma: no cover
if not has_mxnet:
return False
elif isinstance(obj, mx.nd.NDArray):
return True
else:
return False
def is_mxnet_gpu_array(obj: Any) -> bool: # pragma: no cover
return is_mxnet_array(obj) and obj.context.device_type != "cpu"
def is_ivy_array(obj: Any) -> bool: # pragma: no cover
return ivy.is_ivy_array(obj)
def to_numpy(data): # pragma: no cover
if isinstance(data, numpy.ndarray):
return data
elif has_cupy and isinstance(data, cupy.ndarray):
return data.get()
else:
return numpy.array(data)
def set_active_gpu(gpu_id: int) -> "cupy.cuda.Device": # pragma: no cover
"""Set the current GPU device for cupy and torch (if available)."""
if not has_cupy_gpu:
raise ValueError("No CUDA GPU devices detected")
device = cupy.cuda.device.Device(gpu_id)
device.use()
if has_torch_cuda_gpu:
torch.cuda.set_device(gpu_id)
return device
def require_cpu() -> bool: # pragma: no cover
"""Use CPU through best available backend."""
from .backends import get_ops, set_current_ops
ops = get_ops("cpu")
set_current_ops(ops)
return True
def prefer_gpu(gpu_id: int = 0) -> bool: # pragma: no cover
"""Use GPU if it's available. Returns True if so, False otherwise."""
if has_gpu:
require_gpu(gpu_id=gpu_id)
return has_gpu
def require_gpu(gpu_id: int = 0) -> bool: # pragma: no cover
from .backends import CupyOps, MPSOps, set_current_ops
if platform.system() == "Darwin" and not has_torch_mps:
if has_torch:
raise ValueError("Cannot use GPU, installed PyTorch does not support MPS")
raise ValueError("Cannot use GPU, PyTorch is not installed")
elif platform.system() != "Darwin" and not has_cupy:
raise ValueError("Cannot use GPU, CuPy is not installed")
elif not has_gpu:
raise ValueError("No GPU devices detected")
if has_cupy_gpu:
set_current_ops(CupyOps())
set_active_gpu(gpu_id)
else:
set_current_ops(MPSOps())
return True
def copy_array(dst: ArrayXd, src: ArrayXd) -> None: # pragma: no cover
if isinstance(dst, numpy.ndarray) and isinstance(src, numpy.ndarray):
dst[:] = src
elif is_cupy_array(dst):
src = cupy.array(src, copy=False)
cupy.copyto(dst, src)
else:
numpy.copyto(dst, src) # type: ignore
def to_categorical(
Y: IntsXd,
n_classes: Optional[int] = None,
*,
label_smoothing: float = 0.0,
) -> FloatsXd:
if n_classes is None:
n_classes = int(numpy.max(Y) + 1) # type: ignore
if label_smoothing < 0.0:
raise ValueError(
"Label-smoothing parameter has to be greater than or equal to 0"
)
if label_smoothing == 0.0:
if n_classes == 0:
raise ValueError("n_classes should be at least 1")
nongold_prob = 0.0
else:
if not n_classes > 1:
raise ValueError(
"n_classes should be greater than 1 when label smoothing is enabled,"
f"but {n_classes} was provided."
)
nongold_prob = label_smoothing / (n_classes - 1)
max_smooth = (n_classes - 1) / n_classes
if n_classes > 1 and label_smoothing >= max_smooth:
raise ValueError(
f"For {n_classes} classes "
"label_smoothing parameter has to be less than "
f"{max_smooth}, but found {label_smoothing}."
)
xp = get_array_module(Y)
label_distr = xp.full((n_classes, n_classes), nongold_prob, dtype="float32")
xp.fill_diagonal(label_distr, 1 - label_smoothing)
return label_distr[Y]
def get_width(
X: Union[ArrayXd, Ragged, Padded, Sequence[ArrayXd]], *, dim: int = -1
) -> int:
"""Infer the 'width' of a batch of data, which could be any of: Array,
Ragged, Padded or Sequence of Arrays.
"""
if isinstance(X, Ragged):
return get_width(X.data, dim=dim)
elif isinstance(X, Padded):
return get_width(X.data, dim=dim)
elif hasattr(X, "shape") and hasattr(X, "ndim"):
X = cast(ArrayXd, X)
if len(X.shape) == 0:
return 0
elif len(X.shape) == 1:
return int(X.max()) + 1
else:
return X.shape[dim]
elif isinstance(X, (list, tuple)):
if len(X) == 0:
return 0
else:
return get_width(X[0], dim=dim)
else:
err = "Cannot get width of object: has neither shape nor __getitem__"
raise ValueError(err)
def assert_tensorflow_installed() -> None: # pragma: no cover
"""Raise an ImportError if TensorFlow is not installed."""
template = "TensorFlow support requires {pkg}: pip install thinc[tensorflow]"
if not has_tensorflow:
raise ImportError(template.format(pkg="tensorflow>=2.0.0"))
def assert_mxnet_installed() -> None: # pragma: no cover
"""Raise an ImportError if MXNet is not installed."""
if not has_mxnet:
raise ImportError("MXNet support requires mxnet: pip install thinc[mxnet]")
def assert_pytorch_installed() -> None: # pragma: no cover
"""Raise an ImportError if PyTorch is not installed."""
if not has_torch:
raise ImportError("PyTorch support requires torch: pip install thinc[torch]")
def convert_recursive(
is_match: Callable[[Any], bool], convert_item: Callable[[Any], Any], obj: Any
) -> Any:
"""Either convert a single value if it matches a given function, or
recursively walk over potentially nested lists, tuples and dicts applying
the conversion, and returns the same type. Also supports the ArgsKwargs
dataclass.
"""
if is_match(obj):
return convert_item(obj)
elif isinstance(obj, ArgsKwargs):
converted = convert_recursive(is_match, convert_item, list(obj.items()))
return ArgsKwargs.from_items(converted)
elif isinstance(obj, dict):
converted = {}
for key, value in obj.items():
key = convert_recursive(is_match, convert_item, key)
value = convert_recursive(is_match, convert_item, value)
converted[key] = value
return converted
elif isinstance(obj, list):
return [convert_recursive(is_match, convert_item, item) for item in obj]
elif isinstance(obj, tuple):
return tuple(convert_recursive(is_match, convert_item, item) for item in obj)
else:
return obj
def iterate_recursive(is_match: Callable[[Any], bool], obj: Any) -> Any:
"""Either yield a single value if it matches a given function, or recursively
walk over potentially nested lists, tuples and dicts yielding matching
values. Also supports the ArgsKwargs dataclass.
"""
if is_match(obj):
yield obj
elif isinstance(obj, ArgsKwargs):
yield from iterate_recursive(is_match, list(obj.items()))
elif isinstance(obj, dict):
for key, value in obj.items():
yield from iterate_recursive(is_match, key)
yield from iterate_recursive(is_match, value)
elif isinstance(obj, list) or isinstance(obj, tuple):
for item in obj:
yield from iterate_recursive(is_match, item)
def xp2torch(
xp_tensor: ArrayXd,
requires_grad: bool = False,
device: Optional["torch.device"] = None,
) -> "torch.Tensor": # pragma: no cover
"""Convert a numpy or cupy tensor to a PyTorch tensor."""
assert_pytorch_installed()
if device is None:
device = get_torch_default_device()
if hasattr(xp_tensor, "toDlpack"):
dlpack_tensor = xp_tensor.toDlpack() # type: ignore
torch_tensor = torch.utils.dlpack.from_dlpack(dlpack_tensor)
elif hasattr(xp_tensor, "__dlpack__"):
torch_tensor = torch.utils.dlpack.from_dlpack(xp_tensor)
else:
torch_tensor = torch.from_numpy(xp_tensor)
torch_tensor = torch_tensor.to(device)
if requires_grad:
torch_tensor.requires_grad_()
return torch_tensor
def torch2xp(
torch_tensor: "torch.Tensor", *, ops: Optional["Ops"] = None
) -> ArrayXd: # pragma: no cover
"""Convert a torch tensor to a numpy or cupy tensor depending on the `ops` parameter.
If `ops` is `None`, the type of the resultant tensor will be determined by the source tensor's device.
"""
from .api import NumpyOps
assert_pytorch_installed()
if is_torch_cuda_array(torch_tensor):
if isinstance(ops, NumpyOps):
return torch_tensor.detach().cpu().numpy()
else:
return cupy_from_dlpack(torch.utils.dlpack.to_dlpack(torch_tensor))
else:
if isinstance(ops, NumpyOps) or ops is None:
return torch_tensor.detach().cpu().numpy()
else:
return cupy.asarray(torch_tensor)
def ivy2xp(ivy_array: "ivy.Array", *, ops: Optional["Ops"] = None):
"""Convert an ivy array to a numpy or cupy tensor depending on the `ops` parameter.
If `ops` is `None`, the type of the resultant tensor will be determined by the source tensor's device.
"""
from .api import NumpyOps
# ToDo: assert_ivy_installed()
if ivy_array.device != "cpu":
if isinstance(ops, NumpyOps):
return ivy_array.to_numpy()
else:
return cupy.asarray(ivy_array)
else:
if isinstance(ops, NumpyOps) or ops is None:
return ivy_array.to_numpy()
else:
return cupy.asarray(ivy_array)
def xp2ivy(
xp_tensor: ArrayXd,
device: Optional[str] = None,
):
"""Convert a numpy or cupy tensor to an ivy array."""
return ivy.array(xp_tensor, device=device)
def xp2tensorflow(
xp_tensor: ArrayXd, requires_grad: bool = False, as_variable: bool = False
) -> "tf.Tensor": # pragma: no cover
"""Convert a numpy or cupy tensor to a TensorFlow Tensor or Variable"""
assert_tensorflow_installed()
if hasattr(xp_tensor, "toDlpack"):
dlpack_tensor = xp_tensor.toDlpack() # type: ignore
tf_tensor = tf.experimental.dlpack.from_dlpack(dlpack_tensor)
elif hasattr(xp_tensor, "__dlpack__"):
dlpack_tensor = xp_tensor.__dlpack__() # type: ignore
tf_tensor = tf.experimental.dlpack.from_dlpack(dlpack_tensor)
else:
tf_tensor = tf.convert_to_tensor(xp_tensor)
if as_variable:
# tf.Variable() automatically puts in GPU if available.
# So we need to control it using the context manager
with tf.device(tf_tensor.device):
tf_tensor = tf.Variable(tf_tensor, trainable=requires_grad)
if requires_grad is False and as_variable is False:
# tf.stop_gradient() automatically puts in GPU if available.
# So we need to control it using the context manager
with tf.device(tf_tensor.device):
tf_tensor = tf.stop_gradient(tf_tensor)
return tf_tensor
def tensorflow2xp(
tf_tensor: "tf.Tensor", *, ops: Optional["Ops"] = None
) -> ArrayXd: # pragma: no cover
"""Convert a Tensorflow tensor to numpy or cupy tensor depending on the `ops` parameter.
If `ops` is `None`, the type of the resultant tensor will be determined by the source tensor's device.
"""
from .api import NumpyOps
assert_tensorflow_installed()
if is_tensorflow_gpu_array(tf_tensor):
if isinstance(ops, NumpyOps):
return tf_tensor.numpy()
else:
dlpack_tensor = tf.experimental.dlpack.to_dlpack(tf_tensor)
return cupy_from_dlpack(dlpack_tensor)
else:
if isinstance(ops, NumpyOps) or ops is None:
return tf_tensor.numpy()
else:
return cupy.asarray(tf_tensor.numpy())
def xp2mxnet(
xp_tensor: ArrayXd, requires_grad: bool = False
) -> "mx.nd.NDArray": # pragma: no cover
"""Convert a numpy or cupy tensor to a MXNet tensor."""
assert_mxnet_installed()
if hasattr(xp_tensor, "toDlpack"):
dlpack_tensor = xp_tensor.toDlpack() # type: ignore
mx_tensor = mx.nd.from_dlpack(dlpack_tensor)
else:
mx_tensor = mx.nd.from_numpy(xp_tensor)
if requires_grad:
mx_tensor.attach_grad()
return mx_tensor
def mxnet2xp(
mx_tensor: "mx.nd.NDArray", *, ops: Optional["Ops"] = None
) -> ArrayXd: # pragma: no cover
"""Convert a MXNet tensor to a numpy or cupy tensor."""
from .api import NumpyOps
assert_mxnet_installed()
if is_mxnet_gpu_array(mx_tensor):
if isinstance(ops, NumpyOps):
return mx_tensor.detach().asnumpy()
else:
return cupy_from_dlpack(mx_tensor.to_dlpack_for_write())
else:
if isinstance(ops, NumpyOps) or ops is None:
return mx_tensor.detach().asnumpy()
else:
return cupy.asarray(mx_tensor.asnumpy())
# This is how functools.partials seems to do it, too, to retain the return type
PartialT = TypeVar("PartialT")
def partial(
func: Callable[..., PartialT], *args: Any, **kwargs: Any
) -> Callable[..., PartialT]:
"""Wrapper around functools.partial that retains docstrings and can include
other workarounds if needed.
"""
partial_func = functools.partial(func, *args, **kwargs)
partial_func.__doc__ = func.__doc__
return partial_func
class DataValidationError(ValueError):
def __init__(
self,
name: str,
X: Any,
Y: Any,
errors: Union[Sequence[Mapping[str, Any]], List[Dict[str, Any]]] = [],
) -> None:
"""Custom error for validating inputs / outputs at runtime."""
message = f"Data validation error in '{name}'"
type_info = f"X: {type(X)} Y: {type(Y)}"
data = []
for error in errors:
err_loc = " -> ".join([str(p) for p in error.get("loc", [])])
data.append((err_loc, error.get("msg")))
result = [message, type_info, table(data)]
ValueError.__init__(self, "\n\n" + "\n".join(result))
class _ArgModelConfig:
extra = "forbid"
arbitrary_types_allowed = True
def validate_fwd_input_output(
name: str, func: Callable[[Any, Any, bool], Any], X: Any, Y: Any
) -> None:
"""Validate the input and output of a forward function against the type
annotations, if available. Used in Model.initialize with the input and
output samples as they pass through the network.
"""
sig = inspect.signature(func)
empty = inspect.Signature.empty
params = list(sig.parameters.values())
if len(params) != 3:
bad_params = f"{len(params)} ({', '.join([p.name for p in params])})"
err = f"Invalid forward function. Expected 3 arguments (model, X , is_train), got {bad_params}"
raise DataValidationError(name, X, Y, [{"msg": err}])
annot_x = params[1].annotation
annot_y = sig.return_annotation
sig_args: Dict[str, Any] = {"__config__": _ArgModelConfig}
args = {}
if X is not None and annot_x != empty:
if isinstance(X, list) and len(X) > 5:
X = X[:5]
sig_args["X"] = (annot_x, ...)
args["X"] = X
if Y is not None and annot_y != empty:
if isinstance(Y, list) and len(Y) > 5:
Y = Y[:5]
sig_args["Y"] = (annot_y, ...)
args["Y"] = (Y, lambda x: x)
ArgModel = create_model("ArgModel", **sig_args)
# Make sure the forward refs are resolved and the types used by them are
# available in the correct scope. See #494 for details.
ArgModel.update_forward_refs(**types.__dict__)
try:
ArgModel.parse_obj(args)
except ValidationError as e:
raise DataValidationError(name, X, Y, e.errors()) from None
@contextlib.contextmanager
def make_tempfile(mode="r"):
f = tempfile.NamedTemporaryFile(mode=mode, delete=False)
yield f
f.close()
os.remove(f.name)
@contextlib.contextmanager
def data_validation(validation):
with threading.Lock():
prev = DATA_VALIDATION.get()
DATA_VALIDATION.set(validation)
yield
DATA_VALIDATION.set(prev)
@contextlib.contextmanager
def use_nvtx_range(message: str, id_color: int = -1):
"""Context manager to register the executed code as an NVTX range. The
ranges can be used as markers in CUDA profiling."""
if has_cupy:
cupy.cuda.nvtx.RangePush(message, id_color)
yield
cupy.cuda.nvtx.RangePop()
else:
yield
@dataclass
class ArrayInfo:
"""Container for info for checking array compatibility."""
shape: types.Shape
dtype: types.DTypes
@classmethod
def from_array(cls, arr: ArrayXd):
return cls(shape=arr.shape, dtype=arr.dtype)
def check_consistency(self, arr: ArrayXd):
if arr.shape != self.shape:
raise ValueError(
f"Shape mismatch in backprop. Y: {self.shape}, dY: {arr.shape}"
)
if arr.dtype != self.dtype:
raise ValueError(
f"Type mismatch in backprop. Y: {self.dtype}, dY: {arr.dtype}"
)
# fmt: off
__all__ = [
"get_array_module",
"get_torch_default_device",
"fix_random_seed",
"is_cupy_array",
"is_numpy_array",
"set_active_gpu",
"prefer_gpu",
"require_gpu",
"copy_array",
"to_categorical",
"get_width",
"xp2torch",
"torch2xp",
"tensorflow2xp",
"xp2tensorflow",
"validate_fwd_input_output",
"DataValidationError",
"make_tempfile",
"use_nvtx_range",
"ArrayInfo",
"has_cupy",
"has_torch",
]
# fmt: on
def get_ivy_default_device() -> "ivy.Device":
if ivy is None:
raise ValueError("Cannot get default Ivy device when Ivy is not available.")
from .backends import get_current_ops
from .backends.cupy_ops import CupyOps
from .backends.mps_ops import MPSOps
ops = get_current_ops()
if isinstance(ops, CupyOps):
device_id = ivy.current_framework().cuda.current_device()
return ivy.device(f"cuda:{device_id}")
elif isinstance(ops, MPSOps):
return ivy.device("mps")
return ivy.device("cpu")