-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrealtime_obj_detection.py
55 lines (47 loc) · 1.91 KB
/
realtime_obj_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import cv2
import time
ap=argparse.ArgumentParser()
ap.add_argument("-p","--prototxt",required=True,help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m","--model",required=True,help="path to Caffe pre-trained model")
ap.add_argument("-c","--confidence",type=float,default=0.2,help="minimum probability to filter weak detections")
args=vars(ap.parse_args())
CLASSES=["background","aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"]
COLORS=np.random.uniform(0,255,size=(len(CLASSES),3))
print("----Loading model------")
net=cv2.dnn.readNetFromCaffe(args["prototxt"],args["model"])
print("----starting video stream-----")
vs=VideoStream(src=0).start()
time.sleep(2.0)
fps=FPS().start()
while(True):
frame=vs.read()
frame=imutils.resize(frame,width=400)
h,w=frame.shape[:2]
blob=cv2.dnn.blobFromImage(cv2.resize(frame,(300,300)),0.007843,(300,300),127.5)
net.setInput(blob)
detections=net.forward()
for i in np.arange(0,detections.shape[2]):
confidence=detections[0,0,i,2]
if confidence > args["confidence"]:
idx=int(detections[0,0,i,1])
box=detections[0,0,i,3:7]*np.array([w,h,w,h])
(startX,startY,endX,endY)=box.astype("int")
label="{}: {:.2f}%".format(CLASSES[idx],confidence*100)
cv2.rectangle(frame,(startX,startY),(endX,endY),COLORS[idx],2)
y=startY-15 if startY - 15 > 15 else startY +15
cv2.putText(frame,label,(startX,y),cv2.FONT_HERSHEY_SIMPLEX,0.5,COLORS[idx],2)
cv2.imshow("Frame",frame)
key=cv2.waitKey(1) & 0xFF
if key==ord("q"):
break
fps.update()
fps.stop()
print("Elapsed time:{:.2f}".format(fps.elapsed()))
print("Approx FPS :{:.2f}".format(fps.fps()))
cv2.destroyAllWindows()
vs.stop()