forked from VITA-Group/ALISTA
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig.py
405 lines (378 loc) · 17.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
config.py
author: xhchrn
chernxh@tamu.edu
Set up experiment configuration using argparse library.
"""
import os
import sys
import datetime
import argparse
from math import ceil
def str2bool(v):
return v.lower() in ('true', '1')
parser = argparse.ArgumentParser()
# Network arguments
net_arg = parser.add_argument_group('net')
net_arg.add_argument(
'-n', '--net', type=str,
help='Network name.')
net_arg.add_argument(
'-T', '--T', type=int, default=16,
help="Number of layers of LISTA.")
net_arg.add_argument(
'-eT', '--eT', type=int, default=4,
help="Number of layers of encoders.")
net_arg.add_argument(
'-dT', '--dT', type=int, default=16,
help="Number of layers of decoders.")
net_arg.add_argument(
'-p', '--percent', type=float, default=0.8,
help="Percent of entries to be selected as support in each layer.")
net_arg.add_argument(
'-maxp', '--max_percent', type=float, default=0.0,
help="Maximum percentage of entries to be selectedas support in each layer.")
net_arg.add_argument(
'-l', '--lam', type=float, default=0.4,
help="Initial lambda in LISTA solvers.")
net_arg.add_argument(
'-u', '--untied', action='store_true',
help="Whether weights are untied between layers.")
net_arg.add_argument(
'-c', '--coord', action='store_true',
help="Whether use independent vector thresholds.")
net_arg.add_argument(
'-W', '--W', type=str, default="",
help="Pretrained weights for fbss models.")
net_arg.add_argument(
"-eta", "--eta", type=float, default=1e-3,
help="The initial step size in the projected gradient descent for encoding weight matrices.")
net_arg.add_argument(
"-Q", "--Q", type=str, default=None,
help="The matrix that is used to reweight the loss function in encoder training.")
net_arg.add_argument(
'-sc', '--scope', type=str, default="",
help="Scope name of the model.")
# Problem arguments
prob_arg = parser.add_argument_group('prob')
prob_arg.add_argument(
'-M', '--M', type=int, default=250,
help="Dimension of measurements.")
prob_arg.add_argument(
'-N', '--N', type=int, default=500,
help="Dimension of sparse codes.")
prob_arg.add_argument(
'-F', '--F', type=int, default=256,
help='Number of features of extracted patches.')
prob_arg.add_argument(
'-sr', '--sample_rate', type=int, default=None,
help="Sampling rate in compressive sensing experiments.")
prob_arg.add_argument(
'-P', '--pnz', type=float, default=0.1,
help="Percent of nonzero entries in sparse codes.")
prob_arg.add_argument(
'-S', '--SNR', type=str, default='inf',
help="Strength of noises in measurements.")
prob_arg.add_argument(
'-C', '--con_num', type=float, default=0.0,
help="Condition number of measurement matrix. 0 for no modification on condition number.")
prob_arg.add_argument(
'-CN', '--col_normalized', type=str2bool, default=True,
help="Flag of whether normalize the columns of the dictionary or sensing matrix.")
prob_arg.add_argument(
'-task', '--task_type', type=str, default='sc',
help='Task type, in [`sc`, `cs`, `denoise`].')
prob_arg.add_argument(
'-llam', '--lasso_lam', type=float, default=0.2,
help='The weight of l1 norm term `labmda` in LASSO.')
# Conv problem arguments
prob_arg.add_argument(
'-cd', '--conv_d', type=int, default=3,
help="The size of kernels in a convolutional dictionary.")
prob_arg.add_argument(
'-cm', '--conv_m', type=int, default=100,
help="The number of kernels in a convolutional dictionary.")
prob_arg.add_argument(
'-clam', '--conv_lam', type=float, default=0.05,
help="The weight in the objective function used to learn the convolutional dictioanry.")
prob_arg.add_argument(
'-ca', '--conv_alpha', type=float, default=0.1,
help="The initial step size for convolutional ISTA.")
"""Training arguments."""
train_arg = parser.add_argument_group('train')
train_arg.add_argument(
'-lr', '--init_lr', type=float, default=5e-4,
help="Initial learning rate.")
train_arg.add_argument(
'-tbs', '--tbs', type=int, default=64,
help="Training batch size.")
train_arg.add_argument(
'-vbs', '--vbs', type=int, default=1000,
help="Validation batch size.")
train_arg.add_argument(
'-fixval', '--fixval', type=str2bool, default=True,
help="Flag of whether we fix a validation set.")
train_arg.add_argument(
'-supp_prob', '--supp_prob', type=str, default=None,
help="The probability distribution of support we use in trianing.")
train_arg.add_argument(
'-magdist', '--magdist', type=str, default='normal',
help="Type of the magnitude distribution.")
train_arg.add_argument(
'-nmean', '--magnmean', type=float, default=0.0,
help="The expectation of Gaussian that we use to sample magnitudes.")
train_arg.add_argument(
'-nstd', '--magnstd', type=float, default=1.0,
help="The standard deviation of Gaussain we use to sample magnitudes.")
train_arg.add_argument(
'-bp', '--magbp', type=float, default=0.5,
help="The probability that the magnitudes take value `magbv0` when they are"
"sampled from Bernoulli.")
train_arg.add_argument(
'-bv0', '--magbv0', type=float, default=1.0,
help="The value that the magnitudes take with probability `magbp` when they"
"are sampled from Bernoulli.")
train_arg.add_argument(
'-bv1', '--magbv1', type=float, default=1.0,
help="The value that the magnitudes take with probability `1-magbp` when"
"they are sampled from Bernoulli.")
train_arg.add_argument(
'-sigma', '--sigma', type=float, default=20.0,
help="The standard deviation of image noises for denoise task.")
train_arg.add_argument(
"-hc", "--height_crop", type=int, default=321,
help="The height after cropping for BSD500 denoising experiments.")
train_arg.add_argument(
"-wc", "--width_crop", type=int, default=321,
help="The width after cropping for BSD500 denoising experiments.")
train_arg.add_argument(
"-epoch", "--num_epochs", type=int, default=20,
help="The number of training epochs for denoise experiments.\n"
"`-1` means infinite number of epochs.")
train_arg.add_argument(
'-dr', '--decay_rate', type=float, default=0.3,
help="Learning rate decaying rate after training each layer.")
train_arg.add_argument(
'-ld', '--lr_decay', type=str, default='0.2,0.02',
help="Learning rate decaying rate after training each layer.")
train_arg.add_argument(
'-vs', '--val_step', type=int, default=10,
help="Interval of validation in training.")
train_arg.add_argument(
'-mi', '--maxit', type=int, default=200000,
help="Max number iteration of each stage.")
train_arg.add_argument(
'-bw', '--better_wait', type=int, default=4000,
help="Waiting time before jumping to next stage.")
# Experiments arguments
exp_arg = parser.add_argument_group('exp')
exp_arg.add_argument(
'-id', '--exp_id', type=int, default=0,
help="ID of the experiment/model.")
exp_arg.add_argument(
'-ef', '--exp_folder', type=str, default='./experiments',
help="Root folder for problems and momdels.")
exp_arg.add_argument(
'-rf', '--res_folder', type=str, default='./results',
help="Root folder where test results are saved.")
exp_arg.add_argument(
'-pf', '--prob_folder', type=str, default='',
help="Subfolder in exp_folder for a specific setting of problem.")
exp_arg.add_argument(
'--prob', type=str, default='prob.npz',
help="Problem file name in prob_folder.")
exp_arg.add_argument(
'-se', '--sensing', type=str, default=None,
help="Sensing matrix file. Instance of Problem class.")
exp_arg.add_argument(
'-dc', '--dict', type=str, default=None,
help="Dictionary file. Numpy array instance stored as npy file.")
exp_arg.add_argument(
'-df', '--data_folder', type=str, default=None,
help="Folder where the tfrecords datasets are stored.")
exp_arg.add_argument(
'-tf', '--train_file', type=str, default='train.tfrecords',
help="File name of tfrecords file of training data for cs exps.")
exp_arg.add_argument(
'-vf', '--val_file', type=str, default='val.tfrecords',
help="File name of tfrecords file of validation data for cs exps.")
exp_arg.add_argument(
'-col', '--column', type=str2bool, default=False,
help="Flag of whether column-based model is used.")
exp_arg.add_argument(
'-t', '--test', action='store_true',
help="Flag of training or testing models.")
exp_arg.add_argument(
'-np', '--norm_patch', type=str2bool, default=False,
help="Flag of normalizing patches in training and testing.")
exp_arg.add_argument(
'-xt', '--xtest', type=str, default='./data/xtest_n500_p10.npy',
help='Default test x input for simulation experiments.')
exp_arg.add_argument(
"-td", "--test_dir", type=str, default="./data/test_images",
help="Directory that holds testing images for compreessive sensing and "
"denoising experiments.")
exp_arg.add_argument(
'-g', '--gpu', type=str, default='0',
help="ID's of allocated GPUs.")
################################################
####### Arguments for robust experiments #######
################################################
parser.add_argument(
"-ps_max", "--psigma_max", type=float, default=2e-2,
help="Maximum standard deviation for perturbations in dictionaries.")
parser.add_argument(
"-psteps", "--psteps", type=int, default=5,
help="The number of steps for curriculum learning that gradually increases"
"the level of perturbations.")
parser.add_argument(
"-ms", "--msigma", type=float, default=0.0,
help="Standard deviation for measurement noisy in robustness experiments.")
parser.add_argument(
"-eps", "--encoder_psigma", type=float, default=1e-2,
help="The standard deviation for perturbations in dictionaries for encoder pre-training.")
parser.add_argument(
"-elr", "--encoder_lr", type=float, default=1e-6,
help="The initial learning rate for encoders.")
parser.add_argument(
"-eplr", "--encoder_pre_lr", type=float, default=1e-4,
help="The initial learning rate for pre-training encoders.")
parser.add_argument(
"-dlr", "--decoder_lr", type=float, default=1e-4,
help="The initial learning rate for decoders.")
# parser.add_argument(
# "-dlr", "--decoder_pre_lr", type=float, default=1e-4,
# help="The initial learning rate for pre-training decoders.")
parser.add_argument(
"-eb", "--encoder_Binit", type=str, default="default",
help="The initial weight matrices in the encoders.")
parser.add_argument(
"-el", "--encoder_loss", type=str, default="rel2",
help="The loss type of encoder pretraining.")
parser.add_argument(
"-escope", "--encoder_scope", type=str, default="",
help="The scope name for encoders.")
parser.add_argument(
"-dscope", "--decoder_scope", type=str, default="",
help="The scope name for decoders.")
parser.add_argument(
"-eid", "--encoder_id", type=int, default=0,
help="The model id for encoders.")
parser.add_argument(
"-did", "--decoder_id", type=int, default=0,
help="The model id for decoders.")
parser.add_argument(
"-Abs", "--Abs", type=int, default=4,
help="The number of perturbed dictionaries sampled in each robustness training step.")
parser.add_argument(
"-xbs", "--xbs", type=int, default=16,
help="The number of sparse vectors sampled in each robustness training step.")
# parser.add_argument(
# "-maxit", "--maxit", type=int, default=50000,
# help="Max iterations in each stage in robustness experiments.")
def get_config():
config, unparsed = parser.parse_known_args()
"""
Check validity of arguments.
"""
# check if a network model is specified
if config.net == None:
raise ValueError('no model specified')
# set experiment path and folder
if not os.path.exists(config.exp_folder):
os.mkdir(config.exp_folder)
"""Experiments and results base folder."""
if config.prob_folder == "":
if config.task_type in ['sc', "encoder", 'robust']:
config.prob_folder = ('m{}_n{}_k{}_p{}_s{}'.format(
config.M, config.N, config.con_num, config.pnz, config.SNR))
elif config.task_type == 'cs':
# check problem folder: dictionary and sensing matrix
config.prob_folder = ('cs_bsd_d{}-{}'.format(config.F, config.N))
elif config.task_type == "denoise":
config.prob_folder = ("denoise_bsd500_d{d}_m{m}_lam{lam}".format(
d=config.conv_d, m=config.conv_m, lam=config.conv_lam))
# make experiment base path and results base path
setattr(config, 'expbase', os.path.join(config.exp_folder,
config.prob_folder))
setattr(config, 'resbase', os.path.join(config.res_folder,
config.prob_folder))
if not os.path.exists(config.expbase):
os.mkdir(config.expbase)
if not os.path.exists(config.resbase):
os.mkdir(config.resbase)
if config.task_type == 'cs':
if not config.sample_rate is None:
config.M = ceil(config.F * config.sample_rate / 100.0)
else:
config.sample_rate = ceil(config.M / config.F * 100.0)
config.expbase = os.path.join(config.expbase, "r%d"%config.sample_rate)
config.resbase = os.path.join(config.resbase, "r%d"%config.sample_rate)
"""
Problem file for sparse coding task.
Data folder, dictionary and sensing file for compressive sensing task.
"""
if config.task_type == 'sc':
setattr(config, 'probfn' , os.path.join(config.expbase, config.prob))
# Data folder, dictionary and sensing matrix location for cs experiments.
elif config.task_type == 'cs' and not config.test:
# check data files, dictionary and sensing matrix
if config.train_file is None:
raise ValueError("Please provide a training tfrecords file for CS exp!")
if config.val_file is None:
raise ValueError("Please provide a validation tfrecords file for CS exp!")
if config.dict is None:
raise ValueError("Please provide a dictionary for CS exp!")
if config.sensing is None:
raise ValueError("Please provide a sensing matrix for CS exp!")
if not os.path.exists(config.train_file) :
raise ValueError('No training data tfrecords file found.')
if not os.path.exists(config.val_file) :
raise ValueError('No validation data tfrecords file found')
if not os.path.exists(config.sensing) :
raise ValueError('No sensing matrix file found')
if not os.path.exists(config.dict) :
raise ValueError('No dictionary matrix file found')
# Data folder for denoise experiments.
elif config.task_type == 'denoise':
setattr(config, 'probfn' , os.path.join(config.expbase, config.prob))
if config.data_folder is None:
raise ValueError("Please provide a dataset directory tfrecords file for denoise exp!")
if config.train_file is None:
raise ValueError("Please provide a training tfrecords file for denoise exp!")
if config.val_file is None:
raise ValueError("Please provide a validation tfrecords file for denoise exp!")
if not os.path.exists(os.path.join(config.data_folder, config.train_file)) :
raise ValueError('No training data tfrecords file found.')
if not os.path.exists(os.path.join(config.data_folder, config.val_file)) :
raise ValueError('No validation data tfrecords file found')
elif config.task_type == 'robust':
setattr(config, 'probfn' , os.path.join(config.expbase, config.prob))
elif config.task_type == 'encoder':
setattr(config, 'probfn' , os.path.join(config.expbase, config.prob))
# lr_decay
config.lr_decay = tuple([float(decay) for decay in config.lr_decay.split(',')])
"""Noise standard deviation for denoise experiments:
sigma -> standard deviation."""
if config.task_type == 'denoise':
config.denoise_std = config.sigma / 255.0
"""Support and magnitudes distribution settings for sparse coding task."""
if config.task_type == 'sc':
# supp_prob
if not config.supp_prob is None:
try:
config.supp_prob = float(config.supp_prob)
except ValueError:
import numpy as np
config.supp_prob = np.load(config.supp_prob)
"""Magnitudes distribution of sparse codes."""
if config.magdist == 'normal':
config.distargs = dict(mean=config.magnmean,
std=config.magnstd)
elif config.magdist == 'bernoulli':
config.distargs = dict(p=config.magbp,
v0=config.magbv0,
v1=config.magbv1)
return config, unparsed