forked from openai/Video-Pre-Training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
180 lines (153 loc) · 6.39 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import torch as th
import cv2
from gym3.types import DictType
from gym import spaces
from lib.action_mapping import CameraHierarchicalMapping
from lib.actions import ActionTransformer
from lib.policy import MinecraftAgentPolicy
from lib.torch_util import default_device_type, set_default_torch_device
# Hardcoded settings
AGENT_RESOLUTION = (128, 128)
POLICY_KWARGS = dict(
attention_heads=16,
attention_mask_style="clipped_causal",
attention_memory_size=256,
diff_mlp_embedding=False,
hidsize=2048,
img_shape=[128, 128, 3],
impala_chans=[16, 32, 32],
impala_kwargs={"post_pool_groups": 1},
impala_width=8,
init_norm_kwargs={"batch_norm": False, "group_norm_groups": 1},
n_recurrence_layers=4,
only_img_input=True,
pointwise_ratio=4,
pointwise_use_activation=False,
recurrence_is_residual=True,
recurrence_type="transformer",
timesteps=128,
use_pointwise_layer=True,
use_pre_lstm_ln=False,
)
PI_HEAD_KWARGS = dict(temperature=2.0)
ACTION_TRANSFORMER_KWARGS = dict(
camera_binsize=2,
camera_maxval=10,
camera_mu=10,
camera_quantization_scheme="mu_law",
)
ENV_KWARGS = dict(
fov_range=[70, 70],
frameskip=1,
gamma_range=[2, 2],
guiscale_range=[1, 1],
resolution=[640, 360],
cursor_size_range=[16.0, 16.0],
)
TARGET_ACTION_SPACE = {
"ESC": spaces.Discrete(2),
"attack": spaces.Discrete(2),
"back": spaces.Discrete(2),
"camera": spaces.Box(low=-180.0, high=180.0, shape=(2,)),
"drop": spaces.Discrete(2),
"forward": spaces.Discrete(2),
"hotbar.1": spaces.Discrete(2),
"hotbar.2": spaces.Discrete(2),
"hotbar.3": spaces.Discrete(2),
"hotbar.4": spaces.Discrete(2),
"hotbar.5": spaces.Discrete(2),
"hotbar.6": spaces.Discrete(2),
"hotbar.7": spaces.Discrete(2),
"hotbar.8": spaces.Discrete(2),
"hotbar.9": spaces.Discrete(2),
"inventory": spaces.Discrete(2),
"jump": spaces.Discrete(2),
"left": spaces.Discrete(2),
"pickItem": spaces.Discrete(2),
"right": spaces.Discrete(2),
"sneak": spaces.Discrete(2),
"sprint": spaces.Discrete(2),
"swapHands": spaces.Discrete(2),
"use": spaces.Discrete(2)
}
def validate_env(env):
"""Check that the MineRL environment is setup correctly, and raise if not"""
for key, value in ENV_KWARGS.items():
if key == "frameskip":
continue
if getattr(env.task, key) != value:
raise ValueError(f"MineRL environment setting {key} does not match {value}")
action_names = set(env.action_space.spaces.keys())
if action_names != set(TARGET_ACTION_SPACE.keys()):
raise ValueError(f"MineRL action space does match. Expected actions {set(TARGET_ACTION_SPACE.keys())}")
for ac_space_name, ac_space_space in TARGET_ACTION_SPACE.items():
if env.action_space.spaces[ac_space_name] != ac_space_space:
raise ValueError(f"MineRL action space setting {ac_space_name} does not match {ac_space_space}")
def resize_image(img, target_resolution):
# For your sanity, do not resize with any function than INTER_LINEAR
img = cv2.resize(img, target_resolution, interpolation=cv2.INTER_LINEAR)
return img
class MineRLAgent:
def __init__(self, env, device=None, policy_kwargs=None, pi_head_kwargs=None):
validate_env(env)
if device is None:
device = default_device_type()
self.device = th.device(device)
# Set the default torch device for underlying code as well
set_default_torch_device(self.device)
self.action_mapper = CameraHierarchicalMapping(n_camera_bins=11)
action_space = self.action_mapper.get_action_space_update()
action_space = DictType(**action_space)
self.action_transformer = ActionTransformer(**ACTION_TRANSFORMER_KWARGS)
if policy_kwargs is None:
policy_kwargs = POLICY_KWARGS
if pi_head_kwargs is None:
pi_head_kwargs = PI_HEAD_KWARGS
agent_kwargs = dict(policy_kwargs=policy_kwargs, pi_head_kwargs=pi_head_kwargs, action_space=action_space)
self.policy = MinecraftAgentPolicy(**agent_kwargs).to(device)
self.hidden_state = self.policy.initial_state(1)
self._dummy_first = th.from_numpy(np.array((False,))).to(device)
def load_weights(self, path):
"""Load model weights from a path, and reset hidden state"""
self.policy.load_state_dict(th.load(path, map_location=self.device), strict=False)
self.reset()
def reset(self):
"""Reset agent to initial state (i.e., reset hidden state)"""
self.hidden_state = self.policy.initial_state(1)
def _env_obs_to_agent(self, minerl_obs):
"""Turn observation from MineRL environment into model's observation"""
agent_input = resize_image(minerl_obs["pov"], AGENT_RESOLUTION)[None]
agent_input = {"img": th.from_numpy(agent_input).to(self.device)}
return agent_input
def _agent_action_to_env(self, agent_action):
"""Turn output from policy into action for MineRL"""
# This is quite important step (for some reason).
# For the sake of your sanity, remember to do this step (manual conversion to numpy)
# before proceeding. Otherwise, your agent might be a little derp.
action = {
"buttons": agent_action["buttons"].cpu().numpy(),
"camera": agent_action["camera"].cpu().numpy()
}
minerl_action = self.action_mapper.to_factored(action)
minerl_action_transformed = self.action_transformer.policy2env(minerl_action)
return minerl_action_transformed
def _env_action_to_agent(self, minerl_action):
"""Turn action from MineRL to model's action"""
raise NotImplementedError()
def get_action(self, minerl_obs, ):
"""
Get agent's action for given MineRL observation.
Agent's hidden state is tracked internally. To reset it,
call `reset()`.
"""
agent_input = self._env_obs_to_agent(minerl_obs)
# The "first" argument could be used to reset tell episode
# boundaries, but we are only using this for predicting (for now),
# so we do not hassle with it yet.
agent_action, self.hidden_state, _ = self.policy.act(
agent_input, self._dummy_first, self.hidden_state,
stochastic=True
)
minerl_action = self._agent_action_to_env(agent_action)
return minerl_action