forked from moucheng2017/SatsumaSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleLoader.py
89 lines (68 loc) · 2.92 KB
/
SimpleLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torchvision.transforms.functional as TF
from torch.utils import data
from torch.utils.data import Dataset
import random
import nibabel as nib
import torchvision.transforms as transforms
import numpy as np
import glob
from torch.utils.data import DataLoader
import os
class SegDataset(Dataset):
def __init__(self,
images_folder,
labels_folder,
output_shape=(150, 150)):
self.images_folder = images_folder
self.labels_folder = labels_folder
self.h = output_shape[0]
self.w = output_shape[1]
def __getitem__(self, index):
all_images = sorted(glob.glob(os.path.join(self.images_folder, '*.nii.gz*')))
all_labels = sorted(glob.glob(os.path.join(self.labels_folder, '*.nii.gz*')))
image_name = all_images[index]
label_name = all_labels[index]
image = nib.load(image_name)
image = image.get_fdata()
label = nib.load(label_name)
label = label.get_fdata()
# Slicing:
h, w, d = np.shape(image)
image = image[:, :, d // 2] # let's sample a slice in the middle of the volume
label = label[:, :, d // 2] # let's sample a slice in the middle of the volume
image = transforms.ToPILImage()(image)
label = transforms.ToPILImage()(label)
# Resize
resize_img = transforms.Resize(size=(self.h, self.w), interpolation=transforms.InterpolationMode.BILINEAR)
resize_lbl = transforms.Resize(size=(self.h, self.w), interpolation=transforms.InterpolationMode.NEAREST)
image = resize_img(image)
label = resize_lbl(label)
# Random crop
new_h, new_w = np.random.randint(self.h // 2, self.h), np.random.randint(self.w // 2, self.w)
i, j, h, w = transforms.RandomCrop.get_params(image, output_size=(new_h, new_w))
image = TF.crop(image, i, j, h, w)
label = TF.crop(label, i, j, h, w)
# Resize again:
image = resize_img(image)
label = resize_lbl(label)
# Random horizontal flipping
if random.random() > 0.5:
image = TF.hflip(image)
label = TF.hflip(label)
# Random vertical flipping
if random.random() > 0.5:
image = TF.vflip(image)
label = TF.vflip(label)
# Random contrast with hist equalisation
image = transforms.RandomEqualize(0.5)(image)
return image, label
def __len__(self):
return len(glob.glob(os.path.join(self.images_folder, '*.nii.gz*')))
if __name__ == '__main__':
train_data = SegDataset('/home/moucheng/projects_data/Pulmonary_data/airway/labelled/imgs',
'/home/moucheng/projects_data/Pulmonary_data/airway/labelled/lbls',
(140, 140))
train_loader = DataLoader(train_data, batch_size=2, shuffle=False)
for batch_idx, data in enumerate(train_loader, 0):
x, y = data
break