forked from kacperkan/conerf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lr.py
147 lines (127 loc) · 4.6 KB
/
train_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gin
import jax
import jax.numpy as jnp
import tensorflow as tf
from absl import app, flags, logging
from flax import jax_utils, optim
from flax.training import checkpoints
from jax import random
from jax.config import config
from conerf import configs, gpath, model_utils, models
flags.DEFINE_enum(
"mode",
None,
["jax_cpu", "jax_gpu", "jax_tpu"],
"Distributed strategy approach.",
)
flags.DEFINE_string("base_folder", None, "where to store ckpts and logs")
flags.mark_flag_as_required("base_folder")
flags.DEFINE_multi_string("gin_bindings", None, "Gin parameter bindings.")
flags.DEFINE_multi_string("gin_configs", (), "Gin config files.")
FLAGS = flags.FLAGS
config.update("jax_log_compiles", True)
def main(argv):
jax.config.parse_flags_with_absl()
tf.config.experimental.set_visible_devices([], "GPU")
del argv
logging.info("*** Starting experiment")
gin_configs = FLAGS.gin_configs
logging.info("*** Loading Gin configs from: %s", str(gin_configs))
gin.parse_config_files_and_bindings(
config_files=gin_configs,
bindings=FLAGS.gin_bindings,
skip_unknown=True,
)
# Load configurations.
exp_config = configs.ExperimentConfig()
train_config = configs.TrainConfig()
eval_config = configs.EvalConfig()
exp_dir = gpath.GPath(FLAGS.base_folder)
if exp_config.subname:
exp_dir = exp_dir / exp_config.subname
logging.info("\texp_dir = %s", exp_dir)
if not exp_dir.exists():
exp_dir.mkdir(parents=True, exist_ok=True)
checkpoint_dir = exp_dir / "checkpoints"
logging.info("\tcheckpoint_dir = %s", checkpoint_dir)
logging.info(
"Starting process %d. There are %d processes.",
jax.process_index(),
jax.process_count(),
)
logging.info(
"Found %d accelerator devices: %s.",
jax.local_device_count(),
str(jax.local_devices()),
)
logging.info(
"Found %d total devices: %s.", jax.device_count(), str(jax.devices())
)
rng = random.PRNGKey(20200823)
devices_to_use = jax.local_devices()
logging.info("Creating datasource")
dummy_model = models.NerfModel({}, 0, 0, 0)
datasource = exp_config.datasource_cls(
image_scale=exp_config.image_scale,
random_seed=exp_config.random_seed,
# Enable metadata based on model needs.
use_warp_id=dummy_model.use_warp,
use_appearance_id=(
dummy_model.nerf_embed_key == "appearance"
or dummy_model.hyper_embed_key == "appearance"
),
use_camera_id=dummy_model.nerf_embed_key == "camera",
use_time=dummy_model.warp_embed_key == "time",
)
rng, key = random.split(rng)
params = {}
model, params["model"] = models.construct_nerf(
key,
batch_size=eval_config.chunk,
embeddings_dict=datasource.embeddings_dict,
near=datasource.near,
far=datasource.far,
num_attributes=datasource.num_attributes,
)
optimizer_def = optim.Adam(0.0)
if train_config.use_weight_norm:
optimizer_def = optim.WeightNorm(optimizer_def)
optimizer = optimizer_def.create(params)
init_state = model_utils.TrainState(optimizer=optimizer)
del params
state = checkpoints.restore_checkpoint(checkpoint_dir, init_state)
state = jax_utils.replicate(state, devices=devices_to_use)
gt_indices = list(sorted(datasource.annotations.keys()))
frames_with_gt = jnp.array(gt_indices)
gt_attributes = jnp.stack(
[datasource.load_attribute_values(index) for index in gt_indices],
axis=0,
)
if model.use_warp:
gt_betas = model.apply(
{"params": jax_utils.unreplicate(state.optimizer.target["model"])},
{model.warp_embed_key: frames_with_gt},
method=model.encode_warp_embed,
)
params = jnp.linalg.pinv(gt_attributes.T @ gt_attributes) @ (
gt_attributes.T @ gt_betas
)
jnp.save(exp_dir / "warp_lr", params)
if model.has_hyper_embed:
if not model.hyper_use_warp_embed:
gt_betas = model.apply(
{
"params": jax_utils.unreplicate(
state.optimizer.target["model"]
)
},
{model.hyper_embed_key: frames_with_gt},
method=model.encode_hyper_embed,
)
params = jnp.linalg.pinv(gt_attributes.T @ gt_attributes) @ (
gt_attributes.T @ gt_betas
)
jnp.save(exp_dir / "hyper_lr", params)
logging.info("Fitted linear regression")
if __name__ == "__main__":
app.run(main)