forked from primihub/SEAL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrns.cpp
1248 lines (1078 loc) · 51.8 KB
/
rns.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include "seal/util/common.h"
#include "seal/util/numth.h"
#include "seal/util/polyarithsmallmod.h"
#include "seal/util/rns.h"
#include "seal/util/uintarithmod.h"
#include "seal/util/uintarithsmallmod.h"
#include <algorithm>
using namespace std;
namespace seal
{
namespace util
{
RNSBase::RNSBase(const vector<Modulus> &rnsbase, MemoryPoolHandle pool)
: pool_(move(pool)), size_(rnsbase.size())
{
if (!size_)
{
throw invalid_argument("rnsbase cannot be empty");
}
if (!pool_)
{
throw invalid_argument("pool is uninitialized");
}
for (size_t i = 0; i < rnsbase.size(); i++)
{
// The base elements cannot be zero
if (rnsbase[i].is_zero())
{
throw invalid_argument("rnsbase is invalid");
}
for (size_t j = 0; j < i; j++)
{
// The base must be coprime
if (!are_coprime(rnsbase[i].value(), rnsbase[j].value()))
{
throw invalid_argument("rnsbase is invalid");
}
}
}
// Base is good; now copy it over to rnsbase_
base_ = allocate<Modulus>(size_, pool_);
copy_n(rnsbase.cbegin(), size_, base_.get());
// Initialize CRT data
if (!initialize())
{
throw invalid_argument("rnsbase is invalid");
}
}
RNSBase::RNSBase(const RNSBase ©, MemoryPoolHandle pool) : pool_(move(pool)), size_(copy.size_)
{
if (!pool_)
{
throw invalid_argument("pool is uninitialized");
}
// Copy over the base
base_ = allocate<Modulus>(size_, pool_);
copy_n(copy.base_.get(), size_, base_.get());
// Copy over CRT data
base_prod_ = allocate_uint(size_, pool_);
set_uint(copy.base_prod_.get(), size_, base_prod_.get());
punctured_prod_array_ = allocate_uint(size_ * size_, pool_);
set_uint(copy.punctured_prod_array_.get(), size_ * size_, punctured_prod_array_.get());
inv_punctured_prod_mod_base_array_ = allocate<MultiplyUIntModOperand>(size_, pool_);
copy_n(copy.inv_punctured_prod_mod_base_array_.get(), size_, inv_punctured_prod_mod_base_array_.get());
}
bool RNSBase::contains(const Modulus &value) const noexcept
{
bool result = false;
SEAL_ITERATE(iter(base_), size_, [&](auto &I) { result = result || (I == value); });
return result;
}
bool RNSBase::is_subbase_of(const RNSBase &superbase) const noexcept
{
bool result = true;
SEAL_ITERATE(iter(base_), size_, [&](auto &I) { result = result && superbase.contains(I); });
return result;
}
RNSBase RNSBase::extend(const Modulus &value) const
{
if (value.is_zero())
{
throw invalid_argument("value cannot be zero");
}
SEAL_ITERATE(iter(base_), size_, [&](auto I) {
// The base must be coprime
if (!are_coprime(I.value(), value.value()))
{
throw logic_error("cannot extend by given value");
}
});
// Copy over this base
RNSBase newbase(pool_);
newbase.size_ = add_safe(size_, size_t(1));
newbase.base_ = allocate<Modulus>(newbase.size_, newbase.pool_);
copy_n(base_.get(), size_, newbase.base_.get());
// Extend with value
newbase.base_[newbase.size_ - 1] = value;
// Initialize CRT data
if (!newbase.initialize())
{
throw logic_error("cannot extend by given value");
}
return newbase;
}
RNSBase RNSBase::extend(const RNSBase &other) const
{
// The bases must be coprime
for (size_t i = 0; i < other.size_; i++)
{
for (size_t j = 0; j < size_; j++)
{
if (!are_coprime(other[i].value(), base_[j].value()))
{
throw invalid_argument("rnsbase is invalid");
}
}
}
// Copy over this base
RNSBase newbase(pool_);
newbase.size_ = add_safe(size_, other.size_);
newbase.base_ = allocate<Modulus>(newbase.size_, newbase.pool_);
copy_n(base_.get(), size_, newbase.base_.get());
// Extend with other base
copy_n(other.base_.get(), other.size_, newbase.base_.get() + size_);
// Initialize CRT data
if (!newbase.initialize())
{
throw logic_error("cannot extend by given base");
}
return newbase;
}
RNSBase RNSBase::drop() const
{
if (size_ == 1)
{
throw logic_error("cannot drop from base of size 1");
}
// Copy over this base
RNSBase newbase(pool_);
newbase.size_ = size_ - 1;
newbase.base_ = allocate<Modulus>(newbase.size_, newbase.pool_);
copy_n(base_.get(), size_ - 1, newbase.base_.get());
// Initialize CRT data
newbase.initialize();
return newbase;
}
RNSBase RNSBase::drop(const Modulus &value) const
{
if (size_ == 1)
{
throw logic_error("cannot drop from base of size 1");
}
if (!contains(value))
{
throw logic_error("base does not contain value");
}
// Copy over this base
RNSBase newbase(pool_);
newbase.size_ = size_ - 1;
newbase.base_ = allocate<Modulus>(newbase.size_, newbase.pool_);
size_t source_index = 0;
size_t dest_index = 0;
while (dest_index < size_ - 1)
{
if (base_[source_index] != value)
{
newbase.base_[dest_index] = base_[source_index];
dest_index++;
}
source_index++;
}
// Initialize CRT data
newbase.initialize();
return newbase;
}
bool RNSBase::initialize()
{
// Verify that the size is not too large
if (!product_fits_in(size_, size_))
{
return false;
}
base_prod_ = allocate_uint(size_, pool_);
punctured_prod_array_ = allocate_zero_uint(size_ * size_, pool_);
inv_punctured_prod_mod_base_array_ = allocate<MultiplyUIntModOperand>(size_, pool_);
if (size_ > 1)
{
auto rnsbase_values = allocate<uint64_t>(size_, pool_);
SEAL_ITERATE(iter(base_, rnsbase_values), size_, [&](auto I) { get<1>(I) = get<0>(I).value(); });
// Create punctured products
StrideIter<uint64_t *> punctured_prod(punctured_prod_array_.get(), size_);
SEAL_ITERATE(iter(punctured_prod, size_t(0)), size_, [&](auto I) {
multiply_many_uint64_except(rnsbase_values.get(), size_, get<1>(I), get<0>(I).ptr(), pool_);
});
// Compute the full product
auto temp_mpi(allocate_uint(size_, pool_));
multiply_uint(punctured_prod_array_.get(), size_, base_[0].value(), size_, temp_mpi.get());
set_uint(temp_mpi.get(), size_, base_prod_.get());
// Compute inverses of punctured products mod primes
bool invertible = true;
SEAL_ITERATE(iter(punctured_prod, base_, inv_punctured_prod_mod_base_array_), size_, [&](auto I) {
uint64_t temp = modulo_uint(get<0>(I), size_, get<1>(I));
invertible = invertible && try_invert_uint_mod(temp, get<1>(I), temp);
get<2>(I).set(temp, get<1>(I));
});
return invertible;
}
// Case of a single prime
base_prod_[0] = base_[0].value();
punctured_prod_array_[0] = 1;
inv_punctured_prod_mod_base_array_[0].set(1, base_[0]);
return true;
}
void RNSBase::decompose(uint64_t *value, MemoryPoolHandle pool) const
{
if (!value)
{
throw invalid_argument("value cannot be null");
}
if (!pool)
{
throw invalid_argument("pool is uninitialized");
}
if (size_ > 1)
{
// Copy the value
auto value_copy(allocate_uint(size_, pool));
set_uint(value, size_, value_copy.get());
SEAL_ITERATE(iter(value, base_), size_, [&](auto I) {
get<0>(I) = modulo_uint(value_copy.get(), size_, get<1>(I));
});
}
}
void RNSBase::decompose_array(uint64_t *value, size_t count, MemoryPoolHandle pool) const
{
if (!value)
{
throw invalid_argument("value cannot be null");
}
if (!pool)
{
throw invalid_argument("pool is uninitialized");
}
if (size_ > 1)
{
if (!product_fits_in(count, size_))
{
throw logic_error("invalid parameters");
}
// Decompose an array of multi-precision integers into an array of arrays, one per each base element
// Copy the input array into a temporary location and set a StrideIter pointing to it
// Note that the stride size is size_
SEAL_ALLOCATE_GET_STRIDE_ITER(value_copy, uint64_t, count, size_, pool);
set_uint(value, count * size_, value_copy);
// Note how value_copy and value_out have size_ and count reversed
RNSIter value_out(value, count);
// For each output RNS array (one per base element) ...
SEAL_ITERATE(iter(base_, value_out), size_, [&](auto I) {
// For each multi-precision integer in value_copy ...
SEAL_ITERATE(iter(get<1>(I), value_copy), count, [&](auto J) {
// Reduce the multi-precision integer modulo the base element and write to value_out
get<0>(J) = modulo_uint(get<1>(J), size_, get<0>(I));
});
});
}
}
void RNSBase::compose(uint64_t *value, MemoryPoolHandle pool) const
{
if (!value)
{
throw invalid_argument("value cannot be null");
}
if (!pool)
{
throw invalid_argument("pool is uninitialized");
}
if (size_ > 1)
{
// Copy the value
auto temp_value(allocate_uint(size_, pool));
set_uint(value, size_, temp_value.get());
// Clear the result
set_zero_uint(size_, value);
StrideIter<uint64_t *> punctured_prod(punctured_prod_array_.get(), size_);
// Compose an array of integers (one per base element) into a single multi-precision integer
auto temp_mpi(allocate_uint(size_, pool));
SEAL_ITERATE(
iter(temp_value, inv_punctured_prod_mod_base_array_, punctured_prod, base_), size_, [&](auto I) {
uint64_t temp_prod = multiply_uint_mod(get<0>(I), get<1>(I), get<3>(I));
multiply_uint(get<2>(I), size_, temp_prod, size_, temp_mpi.get());
add_uint_uint_mod(temp_mpi.get(), value, base_prod_.get(), size_, value);
});
}
}
void RNSBase::compose_array(uint64_t *value, size_t count, MemoryPoolHandle pool) const
{
if (!value)
{
throw invalid_argument("value cannot be null");
}
if (!pool)
{
throw invalid_argument("pool is uninitialized");
}
if (size_ > 1)
{
if (!product_fits_in(count, size_))
{
throw logic_error("invalid parameters");
}
// Merge the coefficients first
auto temp_array(allocate_uint(count * size_, pool));
for (size_t i = 0; i < count; i++)
{
for (size_t j = 0; j < size_; j++)
{
temp_array[j + (i * size_)] = value[(j * count) + i];
}
}
// Clear the result
set_zero_uint(count * size_, value);
StrideIter<uint64_t *> temp_array_iter(temp_array.get(), size_);
StrideIter<uint64_t *> value_iter(value, size_);
StrideIter<uint64_t *> punctured_prod(punctured_prod_array_.get(), size_);
// Compose an array of RNS integers into a single array of multi-precision integers
auto temp_mpi(allocate_uint(size_, pool));
SEAL_ITERATE(iter(temp_array_iter, value_iter), count, [&](auto I) {
SEAL_ITERATE(
iter(get<0>(I), inv_punctured_prod_mod_base_array_, punctured_prod, base_), size_, [&](auto J) {
uint64_t temp_prod = multiply_uint_mod(get<0>(J), get<1>(J), get<3>(J));
multiply_uint(get<2>(J), size_, temp_prod, size_, temp_mpi.get());
add_uint_uint_mod(temp_mpi.get(), get<1>(I), base_prod_.get(), size_, get<1>(I));
});
});
}
}
void BaseConverter::fast_convert(ConstCoeffIter in, CoeffIter out, MemoryPoolHandle pool) const
{
size_t ibase_size = ibase_.size();
size_t obase_size = obase_.size();
SEAL_ALLOCATE_GET_COEFF_ITER(temp, ibase_size, pool);
SEAL_ITERATE(
iter(temp, in, ibase_.inv_punctured_prod_mod_base_array(), ibase_.base()), ibase_size,
[&](auto I) { get<0>(I) = multiply_uint_mod(get<1>(I), get<2>(I), get<3>(I)); });
// for (size_t j = 0; j < obase_size; j++)
SEAL_ITERATE(iter(out, base_change_matrix_, obase_.base()), obase_size, [&](auto I) {
get<0>(I) = dot_product_mod(temp, get<1>(I).get(), ibase_size, get<2>(I));
});
}
void BaseConverter::fast_convert_array(ConstRNSIter in, RNSIter out, MemoryPoolHandle pool) const
{
#ifdef SEAL_DEBUG
if (in.poly_modulus_degree() != out.poly_modulus_degree())
{
throw invalid_argument("in and out are incompatible");
}
#endif
size_t ibase_size = ibase_.size();
size_t obase_size = obase_.size();
size_t count = in.poly_modulus_degree();
// Note that the stride size is ibase_size
SEAL_ALLOCATE_GET_STRIDE_ITER(temp, uint64_t, count, ibase_size, pool);
SEAL_ITERATE(
iter(in, ibase_.inv_punctured_prod_mod_base_array(), ibase_.base(), size_t(0)), ibase_size,
[&](auto I) {
// The current ibase index
size_t ibase_index = get<3>(I);
if (get<1>(I).operand == 1)
{
// No multiplication needed
SEAL_ITERATE(iter(get<0>(I), temp), count, [&](auto J) {
// Reduce modulo ibase element
get<1>(J)[ibase_index] = barrett_reduce_64(get<0>(J), get<2>(I));
});
}
else
{
// Multiplication needed
SEAL_ITERATE(iter(get<0>(I), temp), count, [&](auto J) {
// Multiply coefficient of in with ibase_.inv_punctured_prod_mod_base_array_ element
get<1>(J)[ibase_index] = multiply_uint_mod(get<0>(J), get<1>(I), get<2>(I));
});
}
});
SEAL_ITERATE(iter(out, base_change_matrix_, obase_.base()), obase_size, [&](auto I) {
SEAL_ITERATE(iter(get<0>(I), temp), count, [&](auto J) {
// Compute the base conversion sum modulo obase element
get<0>(J) = dot_product_mod(get<1>(J), get<1>(I).get(), ibase_size, get<2>(I));
});
});
}
// See "An Improved RNS Variant of the BFV Homomorphic Encryption Scheme" (CT-RSA 2019) for details
void BaseConverter::exact_convert_array(ConstRNSIter in, CoeffIter out, MemoryPoolHandle pool) const
{
size_t ibase_size = ibase_.size();
size_t obase_size = obase_.size();
size_t count = in.poly_modulus_degree();
if (obase_size != 1)
{
throw invalid_argument("out base in exact_convert_array must be one.");
}
// Note that the stride size is ibase_size
SEAL_ALLOCATE_GET_STRIDE_ITER(temp, uint64_t, count, ibase_size, pool);
// The iterator storing v
SEAL_ALLOCATE_GET_STRIDE_ITER(v, double_t, count, ibase_size, pool);
// Aggregated rounded v
SEAL_ALLOCATE_GET_PTR_ITER(aggregated_rounded_v, uint64_t, count, pool);
// Calculate [x_{i} * \hat{q_{i}}]_{q_{i}}
SEAL_ITERATE(
iter(in, ibase_.inv_punctured_prod_mod_base_array(), ibase_.base(), size_t(0)), ibase_size,
[&](auto I) {
// The current ibase index
size_t ibase_index = get<3>(I);
double_t divisor = static_cast<double_t>(get<2>(I).value());
if (get<1>(I).operand == 1)
{
// No multiplication needed
SEAL_ITERATE(iter(get<0>(I), temp, v), count, [&](auto J) {
// Reduce modulo ibase element
get<1>(J)[ibase_index] = barrett_reduce_64(get<0>(J), get<2>(I));
double_t dividend = static_cast<double_t>(get<1>(J)[ibase_index]);
get<2>(J)[ibase_index] = dividend / divisor;
});
}
else
{
// Multiplication needed
SEAL_ITERATE(iter(get<0>(I), temp, v), count, [&](auto J) {
// Multiply coefficient of in with ibase_.inv_punctured_prod_mod_base_array_ element
get<1>(J)[ibase_index] = multiply_uint_mod(get<0>(J), get<1>(I), get<2>(I));
double_t dividend = static_cast<double_t>(get<1>(J)[ibase_index]);
get<2>(J)[ibase_index] = dividend / divisor;
});
}
});
// Aggrate v and rounding
SEAL_ITERATE(iter(v, aggregated_rounded_v), count, [&](auto I) {
// Otherwise a memory space of the last execution will be used.
double_t aggregated_v = 0.0;
for (size_t i = 0; i < ibase_size; ++i)
{
aggregated_v += get<0>(I)[i];
}
aggregated_v += 0.5;
get<1>(I) = static_cast<uint64_t>(aggregated_v);
});
auto p = obase_.base()[0];
auto q_mod_p = modulo_uint(ibase_.base_prod(), ibase_size, p);
auto base_change_matrix_first = base_change_matrix_[0].get();
// Final multiplication
SEAL_ITERATE(iter(out, temp, aggregated_rounded_v), count, [&](auto J) {
// Compute the base conversion sum modulo obase element
auto sum_mod_obase = dot_product_mod(get<1>(J), base_change_matrix_first, ibase_size, p);
// Minus v*[q]_{p} mod p
auto v_q_mod_p = multiply_uint_mod(get<2>(J), q_mod_p, p);
get<0>(J) = sub_uint_mod(sum_mod_obase, v_q_mod_p, p);
});
}
void BaseConverter::initialize()
{
// Verify that the size is not too large
if (!product_fits_in(ibase_.size(), obase_.size()))
{
throw logic_error("invalid parameters");
}
// Create the base-change matrix rows
base_change_matrix_ = allocate<Pointer<uint64_t>>(obase_.size(), pool_);
SEAL_ITERATE(iter(base_change_matrix_, obase_.base()), obase_.size(), [&](auto I) {
// Create the base-change matrix columns
get<0>(I) = allocate_uint(ibase_.size(), pool_);
StrideIter<const uint64_t *> ibase_punctured_prod_array(ibase_.punctured_prod_array(), ibase_.size());
SEAL_ITERATE(iter(get<0>(I), ibase_punctured_prod_array), ibase_.size(), [&](auto J) {
// Base-change matrix contains the punctured products of ibase elements modulo the obase
get<0>(J) = modulo_uint(get<1>(J), ibase_.size(), get<1>(I));
});
});
}
RNSTool::RNSTool(
size_t poly_modulus_degree, const RNSBase &coeff_modulus, const Modulus &plain_modulus,
MemoryPoolHandle pool)
: pool_(move(pool))
{
#ifdef SEAL_DEBUG
if (!pool_)
{
throw invalid_argument("pool is uninitialized");
}
#endif
initialize(poly_modulus_degree, coeff_modulus, plain_modulus);
}
void RNSTool::initialize(size_t poly_modulus_degree, const RNSBase &q, const Modulus &t)
{
// Return if q is out of bounds
if (q.size() < SEAL_COEFF_MOD_COUNT_MIN || q.size() > SEAL_COEFF_MOD_COUNT_MAX)
{
throw invalid_argument("rnsbase is invalid");
}
// Return if coeff_count is not a power of two or out of bounds
int coeff_count_power = get_power_of_two(poly_modulus_degree);
if (coeff_count_power < 0 || poly_modulus_degree > SEAL_POLY_MOD_DEGREE_MAX ||
poly_modulus_degree < SEAL_POLY_MOD_DEGREE_MIN)
{
throw invalid_argument("poly_modulus_degree is invalid");
}
t_ = t;
coeff_count_ = poly_modulus_degree;
// Allocate memory for the bases q, B, Bsk, Bsk U m_tilde, t_gamma
size_t base_q_size = q.size();
// In some cases we might need to increase the size of the base B by one, namely we require
// K * n * t * q^2 < q * prod(B) * m_sk, where K takes into account cross terms when larger size ciphertexts
// are used, and n is the "delta factor" for the ring. We reserve 32 bits for K * n. Here the coeff modulus
// primes q_i are bounded to be SEAL_USER_MOD_BIT_COUNT_MAX (60) bits, and all primes in B and m_sk are
// SEAL_INTERNAL_MOD_BIT_COUNT (61) bits.
int total_coeff_bit_count = get_significant_bit_count_uint(q.base_prod(), q.size());
size_t base_B_size = base_q_size;
if (32 + t_.bit_count() + total_coeff_bit_count >=
SEAL_INTERNAL_MOD_BIT_COUNT * safe_cast<int>(base_q_size) + SEAL_INTERNAL_MOD_BIT_COUNT)
{
base_B_size++;
}
size_t base_Bsk_size = add_safe(base_B_size, size_t(1));
size_t base_Bsk_m_tilde_size = add_safe(base_Bsk_size, size_t(1));
size_t base_t_gamma_size = 0;
// Size check
if (!product_fits_in(coeff_count_, base_Bsk_m_tilde_size))
{
throw logic_error("invalid parameters");
}
// Sample primes for B and two more primes: m_sk and gamma
auto baseconv_primes =
get_primes(mul_safe(size_t(2), coeff_count_), SEAL_INTERNAL_MOD_BIT_COUNT, base_Bsk_m_tilde_size);
auto baseconv_primes_iter = baseconv_primes.cbegin();
m_sk_ = *baseconv_primes_iter++;
gamma_ = *baseconv_primes_iter++;
vector<Modulus> base_B_primes;
copy_n(baseconv_primes_iter, base_B_size, back_inserter(base_B_primes));
// Set m_tilde_ to a non-prime value
m_tilde_ = uint64_t(1) << 32;
// Populate the base arrays
base_q_ = allocate<RNSBase>(pool_, q, pool_);
base_B_ = allocate<RNSBase>(pool_, base_B_primes, pool_);
base_Bsk_ = allocate<RNSBase>(pool_, base_B_->extend(m_sk_));
base_Bsk_m_tilde_ = allocate<RNSBase>(pool_, base_Bsk_->extend(m_tilde_));
// Set up t-gamma base if t_ is non-zero (using BFV)
if (!t_.is_zero())
{
base_t_gamma_size = 2;
base_t_gamma_ = allocate<RNSBase>(pool_, vector<Modulus>{ t_, gamma_ }, pool_);
}
// Generate the Bsk NTTTables; these are used for NTT after base extension to Bsk
try
{
CreateNTTTables(
coeff_count_power, vector<Modulus>(base_Bsk_->base(), base_Bsk_->base() + base_Bsk_size),
base_Bsk_ntt_tables_, pool_);
}
catch (const logic_error &)
{
throw logic_error("invalid rns bases");
}
if (!t_.is_zero())
{
// Set up BaseConvTool for q --> {t}
base_q_to_t_conv_ = allocate<BaseConverter>(pool_, *base_q_, RNSBase({ t_ }, pool_), pool_);
}
// Set up BaseConverter for q --> Bsk
base_q_to_Bsk_conv_ = allocate<BaseConverter>(pool_, *base_q_, *base_Bsk_, pool_);
// Set up BaseConverter for q --> {m_tilde}
base_q_to_m_tilde_conv_ = allocate<BaseConverter>(pool_, *base_q_, RNSBase({ m_tilde_ }, pool_), pool_);
// Set up BaseConverter for B --> q
base_B_to_q_conv_ = allocate<BaseConverter>(pool_, *base_B_, *base_q_, pool_);
// Set up BaseConverter for B --> {m_sk}
base_B_to_m_sk_conv_ = allocate<BaseConverter>(pool_, *base_B_, RNSBase({ m_sk_ }, pool_), pool_);
if (base_t_gamma_)
{
// Set up BaseConverter for q --> {t, gamma}
base_q_to_t_gamma_conv_ = allocate<BaseConverter>(pool_, *base_q_, *base_t_gamma_, pool_);
}
// Compute prod(B) mod q
prod_B_mod_q_ = allocate_uint(base_q_size, pool_);
SEAL_ITERATE(iter(prod_B_mod_q_, base_q_->base()), base_q_size, [&](auto I) {
get<0>(I) = modulo_uint(base_B_->base_prod(), base_B_size, get<1>(I));
});
uint64_t temp;
// Compute prod(q)^(-1) mod Bsk
inv_prod_q_mod_Bsk_ = allocate<MultiplyUIntModOperand>(base_Bsk_size, pool_);
for (size_t i = 0; i < base_Bsk_size; i++)
{
temp = modulo_uint(base_q_->base_prod(), base_q_size, (*base_Bsk_)[i]);
if (!try_invert_uint_mod(temp, (*base_Bsk_)[i], temp))
{
throw logic_error("invalid rns bases");
}
inv_prod_q_mod_Bsk_[i].set(temp, (*base_Bsk_)[i]);
}
// Compute prod(B)^(-1) mod m_sk
temp = modulo_uint(base_B_->base_prod(), base_B_size, m_sk_);
if (!try_invert_uint_mod(temp, m_sk_, temp))
{
throw logic_error("invalid rns bases");
}
inv_prod_B_mod_m_sk_.set(temp, m_sk_);
// Compute m_tilde^(-1) mod Bsk
inv_m_tilde_mod_Bsk_ = allocate<MultiplyUIntModOperand>(base_Bsk_size, pool_);
SEAL_ITERATE(iter(inv_m_tilde_mod_Bsk_, base_Bsk_->base()), base_Bsk_size, [&](auto I) {
if (!try_invert_uint_mod(barrett_reduce_64(m_tilde_.value(), get<1>(I)), get<1>(I), temp))
{
throw logic_error("invalid rns bases");
}
get<0>(I).set(temp, get<1>(I));
});
// Compute prod(q)^(-1) mod m_tilde
temp = modulo_uint(base_q_->base_prod(), base_q_size, m_tilde_);
if (!try_invert_uint_mod(temp, m_tilde_, temp))
{
throw logic_error("invalid rns bases");
}
neg_inv_prod_q_mod_m_tilde_.set(negate_uint_mod(temp, m_tilde_), m_tilde_);
// Compute prod(q) mod Bsk
prod_q_mod_Bsk_ = allocate_uint(base_Bsk_size, pool_);
SEAL_ITERATE(iter(prod_q_mod_Bsk_, base_Bsk_->base()), base_Bsk_size, [&](auto I) {
get<0>(I) = modulo_uint(base_q_->base_prod(), base_q_size, get<1>(I));
});
if (base_t_gamma_)
{
// Compute gamma^(-1) mod t
if (!try_invert_uint_mod(barrett_reduce_64(gamma_.value(), t_), t_, temp))
{
throw logic_error("invalid rns bases");
}
inv_gamma_mod_t_.set(temp, t_);
// Compute prod({t, gamma}) mod q
prod_t_gamma_mod_q_ = allocate<MultiplyUIntModOperand>(base_q_size, pool_);
SEAL_ITERATE(iter(prod_t_gamma_mod_q_, base_q_->base()), base_q_size, [&](auto I) {
get<0>(I).set(
multiply_uint_mod((*base_t_gamma_)[0].value(), (*base_t_gamma_)[1].value(), get<1>(I)),
get<1>(I));
});
// Compute -prod(q)^(-1) mod {t, gamma}
neg_inv_q_mod_t_gamma_ = allocate<MultiplyUIntModOperand>(base_t_gamma_size, pool_);
SEAL_ITERATE(iter(neg_inv_q_mod_t_gamma_, base_t_gamma_->base()), base_t_gamma_size, [&](auto I) {
get<0>(I).operand = modulo_uint(base_q_->base_prod(), base_q_size, get<1>(I));
if (!try_invert_uint_mod(get<0>(I).operand, get<1>(I), get<0>(I).operand))
{
throw logic_error("invalid rns bases");
}
get<0>(I).set(negate_uint_mod(get<0>(I).operand, get<1>(I)), get<1>(I));
});
}
// Compute q[last]^(-1) mod q[i] for i = 0..last-1
// This is used by modulus switching and rescaling
inv_q_last_mod_q_ = allocate<MultiplyUIntModOperand>(base_q_size - 1, pool_);
SEAL_ITERATE(iter(inv_q_last_mod_q_, base_q_->base()), base_q_size - 1, [&](auto I) {
if (!try_invert_uint_mod((*base_q_)[base_q_size - 1].value(), get<1>(I), temp))
{
throw logic_error("invalid rns bases");
}
get<0>(I).set(temp, get<1>(I));
});
if (t_.value() != 0)
{
if (!try_invert_uint_mod(base_q_->base()[base_q_size - 1].value(), t_, inv_q_last_mod_t_))
{
throw logic_error("invalid rns bases");
}
q_last_mod_t_ = barrett_reduce_64(base_q_->base()[base_q_size - 1].value(), t_);
}
}
void RNSTool::divide_and_round_q_last_inplace(RNSIter input, MemoryPoolHandle pool) const
{
#ifdef SEAL_DEBUG
if (!input)
{
throw invalid_argument("input cannot be null");
}
if (input.poly_modulus_degree() != coeff_count_)
{
throw invalid_argument("input is not valid for encryption parameters");
}
if (!pool)
{
throw invalid_argument("pool is uninitialized");
}
#endif
size_t base_q_size = base_q_->size();
CoeffIter last_input = input[base_q_size - 1];
// Add (qi-1)/2 to change from flooring to rounding
Modulus last_modulus = (*base_q_)[base_q_size - 1];
uint64_t half = last_modulus.value() >> 1;
add_poly_scalar_coeffmod(last_input, coeff_count_, half, last_modulus, last_input);
SEAL_ALLOCATE_GET_COEFF_ITER(temp, coeff_count_, pool);
SEAL_ITERATE(iter(input, inv_q_last_mod_q_, base_q_->base()), base_q_size - 1, [&](auto I) {
// (ct mod qk) mod qi
modulo_poly_coeffs(last_input, coeff_count_, get<2>(I), temp);
// Subtract rounding correction here; the negative sign will turn into a plus in the next subtraction
uint64_t half_mod = barrett_reduce_64(half, get<2>(I));
sub_poly_scalar_coeffmod(temp, coeff_count_, half_mod, get<2>(I), temp);
// (ct mod qi) - (ct mod qk) mod qi
sub_poly_coeffmod(get<0>(I), temp, coeff_count_, get<2>(I), get<0>(I));
// qk^(-1) * ((ct mod qi) - (ct mod qk)) mod qi
multiply_poly_scalar_coeffmod(get<0>(I), coeff_count_, get<1>(I), get<2>(I), get<0>(I));
});
}
void RNSTool::divide_and_round_q_last_ntt_inplace(
RNSIter input, ConstNTTTablesIter rns_ntt_tables, MemoryPoolHandle pool) const
{
#ifdef SEAL_DEBUG
if (!input)
{
throw invalid_argument("input cannot be null");
}
if (input.poly_modulus_degree() != coeff_count_)
{
throw invalid_argument("input is not valid for encryption parameters");
}
if (!rns_ntt_tables)
{
throw invalid_argument("rns_ntt_tables cannot be null");
}
if (!pool)
{
throw invalid_argument("pool is uninitialized");
}
#endif
size_t base_q_size = base_q_->size();
CoeffIter last_input = input[base_q_size - 1];
// Convert to non-NTT form
inverse_ntt_negacyclic_harvey(last_input, rns_ntt_tables[base_q_size - 1]);
// Add (qi-1)/2 to change from flooring to rounding
Modulus last_modulus = (*base_q_)[base_q_size - 1];
uint64_t half = last_modulus.value() >> 1;
add_poly_scalar_coeffmod(last_input, coeff_count_, half, last_modulus, last_input);
SEAL_ALLOCATE_GET_COEFF_ITER(temp, coeff_count_, pool);
SEAL_ITERATE(iter(input, inv_q_last_mod_q_, base_q_->base(), rns_ntt_tables), base_q_size - 1, [&](auto I) {
// (ct mod qk) mod qi
if (get<2>(I).value() < last_modulus.value())
{
modulo_poly_coeffs(last_input, coeff_count_, get<2>(I), temp);
}
else
{
set_uint(last_input, coeff_count_, temp);
}
// Lazy subtraction here. ntt_negacyclic_harvey_lazy can take 0 < x < 4*qi input.
uint64_t neg_half_mod = get<2>(I).value() - barrett_reduce_64(half, get<2>(I));
// Note: lambda function parameter must be passed by reference here
SEAL_ITERATE(temp, coeff_count_, [&](auto &J) { J += neg_half_mod; });
#if SEAL_USER_MOD_BIT_COUNT_MAX <= 60
// Since SEAL uses at most 60-bit moduli, 8*qi < 2^63.
// This ntt_negacyclic_harvey_lazy results in [0, 4*qi).
uint64_t qi_lazy = get<2>(I).value() << 2;
ntt_negacyclic_harvey_lazy(temp, get<3>(I));
#else
// 2^60 < pi < 2^62, then 4*pi < 2^64, we perfrom one reduction from [0, 4*qi) to [0, 2*qi) after ntt.
uint64_t qi_lazy = get<2>(I).value() << 1;
ntt_negacyclic_harvey_lazy(temp, get<3>(I));
// Note: lambda function parameter must be passed by reference here
SEAL_ITERATE(temp, coeff_count_, [&](auto &J) {
J -= (qi_lazy & static_cast<uint64_t>(-static_cast<int64_t>(J >= qi_lazy)));
});
#endif
// Lazy subtraction again, results in [0, 2*qi_lazy),
// The reduction [0, 2*qi_lazy) -> [0, qi) is done implicitly in multiply_poly_scalar_coeffmod.
SEAL_ITERATE(iter(get<0>(I), temp), coeff_count_, [&](auto J) { get<0>(J) += qi_lazy - get<1>(J); });
// qk^(-1) * ((ct mod qi) - (ct mod qk)) mod qi
multiply_poly_scalar_coeffmod(get<0>(I), coeff_count_, get<1>(I), get<2>(I), get<0>(I));
});
}
void RNSTool::fastbconv_sk(ConstRNSIter input, RNSIter destination, MemoryPoolHandle pool) const
{
#ifdef SEAL_DEBUG
if (!input)
{
throw invalid_argument("input cannot be null");
}
if (input.poly_modulus_degree() != coeff_count_)
{
throw invalid_argument("input is not valid for encryption parameters");
}
if (!destination)
{
throw invalid_argument("destination cannot be null");
}
if (destination.poly_modulus_degree() != coeff_count_)
{
throw invalid_argument("destination is not valid for encryption parameters");
}
if (!pool)
{
throw invalid_argument("pool is uninitialized");
}
#endif
/*
Require: Input in base Bsk
Ensure: Output in base q
*/
size_t base_q_size = base_q_->size();
size_t base_B_size = base_B_->size();
// Fast convert B -> q; input is in Bsk but we only use B
base_B_to_q_conv_->fast_convert_array(input, destination, pool);
// Compute alpha_sk
// Fast convert B -> {m_sk}; input is in Bsk but we only use B
SEAL_ALLOCATE_GET_COEFF_ITER(temp, coeff_count_, pool);
base_B_to_m_sk_conv_->fast_convert_array(input, RNSIter(temp, coeff_count_), pool);
// Take the m_sk part of input, subtract from temp, and multiply by inv_prod_B_mod_m_sk_
// Note: input_sk is allocated in input[base_B_size]
SEAL_ALLOCATE_GET_COEFF_ITER(alpha_sk, coeff_count_, pool);
SEAL_ITERATE(iter(alpha_sk, temp, input[base_B_size]), coeff_count_, [&](auto I) {
// It is not necessary for the negation to be reduced modulo the small prime
get<0>(I) = multiply_uint_mod(get<1>(I) + (m_sk_.value() - get<2>(I)), inv_prod_B_mod_m_sk_, m_sk_);
});
// alpha_sk is now ready for the Shenoy-Kumaresan conversion; however, note that our
// alpha_sk here is not a centered reduction, so we need to apply a correction below.
const uint64_t m_sk_div_2 = m_sk_.value() >> 1;
SEAL_ITERATE(iter(prod_B_mod_q_, base_q_->base(), destination), base_q_size, [&](auto I) {
// Set up the multiplication helpers
MultiplyUIntModOperand prod_B_mod_q_elt;
prod_B_mod_q_elt.set(get<0>(I), get<1>(I));
MultiplyUIntModOperand neg_prod_B_mod_q_elt;
neg_prod_B_mod_q_elt.set(get<1>(I).value() - get<0>(I), get<1>(I));
SEAL_ITERATE(iter(alpha_sk, get<2>(I)), coeff_count_, [&](auto J) {
// Correcting alpha_sk since it represents a negative value
if (get<0>(J) > m_sk_div_2)
{
get<1>(J) = multiply_add_uint_mod(
negate_uint_mod(get<0>(J), m_sk_), prod_B_mod_q_elt, get<1>(J), get<1>(I));
}
// No correction needed
else
{
// It is not necessary for the negation to be reduced modulo the small prime
get<1>(J) = multiply_add_uint_mod(get<0>(J), neg_prod_B_mod_q_elt, get<1>(J), get<1>(I));
}
});
});
}
void RNSTool::sm_mrq(ConstRNSIter input, RNSIter destination, MemoryPoolHandle pool) const
{
#ifdef SEAL_DEBUG
if (input == nullptr)
{
throw invalid_argument("input cannot be null");
}
if (input.poly_modulus_degree() != coeff_count_)
{
throw invalid_argument("input is not valid for encryption parameters");
}
if (!destination)
{
throw invalid_argument("destination cannot be null");
}
if (destination.poly_modulus_degree() != coeff_count_)
{
throw invalid_argument("destination is not valid for encryption parameters");
}
if (!pool)
{
throw invalid_argument("pool is uninitialized");