-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_ft.py
484 lines (435 loc) · 21.2 KB
/
run_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import argparse
import time
import warnings
import torch
import os, time
import sys
import yaml
import wandb
import datetime
import logging
import random
import numpy as np
import pandas as pd
import transformers
import json
import torch.nn as nn
from tqdm import tqdm
from torch.utils.data import DataLoader
from typing import *
# from transformers import get_inverse_sqrt_schedule
from tqdm import tqdm
from copy import deepcopy
from concurrent.futures import ThreadPoolExecutor, as_completed
from accelerate.utils import set_seed
from accelerate import Accelerator
from torchmetrics.classification import Accuracy, Recall, Precision, MatthewsCorrCoef, AUROC, F1Score, MatthewsCorrCoef
from torchmetrics.classification import BinaryAccuracy, BinaryRecall, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryMatthewsCorrCoef, BinaryF1Score
from torchmetrics.regression import SpearmanCorrCoef
from src.models import ProtssnClassification, PLM_model, GNN_model
from src.utils.data_utils import BatchSampler
from src.utils.utils import param_num, total_param_num
from src.dataset.supervise_dataset import SuperviseDataset
from src.utils.dataset_utils import NormalizeProtein
# set path
current_dir = os.getcwd()
sys.path.append(current_dir)
# ignore warning information
transformers.logging.set_verbosity_error()
warnings.filterwarnings("ignore")
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
def printlog(info):
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n" + "==========" * 3 + "%s" % nowtime + "==========" * 3)
print(str(info) + "\n")
class StepRunner:
def __init__(self, args, model,
loss_fn, accelerator=None,
stage="train", metrics_dict=None,
optimizer=None, scheduler=None):
self.model = model
self.metrics_dict, self.stage = metrics_dict, stage
self.accelerator = accelerator
self.optimizer, self.scheduler, self.loss_fn = optimizer, scheduler, loss_fn
self.args = args
def step(self, batch):
if self.stage == "train":
with self.accelerator.accumulate(self.model):
logits = self.model(batch).cuda()
label = torch.cat([data.label for data in batch]).to(logits.device)
if self.args.problem_type == 'regression' and self.args.num_labels == 1:
loss = loss_fn(logits.squeeze(), label.squeeze())
elif self.args.problem_type == 'multi_label_classification':
loss = loss_fn(logits, label.float())
else:
loss = loss_fn(logits, label)
self.accelerator.backward(loss)
if self.accelerator.sync_gradients and self.args.max_grad_norm is not None:
self.accelerator.clip_grad_norm_(self.model.pooling_head.parameters(), self.args.max_grad_norm)
self.optimizer.step()
if self.scheduler is not None:
self.scheduler.step() # Update learning rate schedule
self.optimizer.zero_grad()
else:
logits = self.model(batch).cuda()
label = torch.cat([data.label for data in batch]).to(logits.device)
if self.args.problem_type == 'regression' and self.args.num_labels == 1:
loss = loss_fn(logits.squeeze(), label.squeeze())
elif self.args.problem_type == 'multi_label_classification':
loss = loss_fn(logits, label.float())
else:
loss = loss_fn(logits, label)
# compute metrics
if self.metrics_dict and self.stage != "train":
for name, metric_fn in self.metrics_dict.items():
if self.args.problem_type == 'regression' and self.args.num_labels == 1:
metric_fn(logits.squeeze(), label.squeeze())
elif self.args.problem_type == 'multi_label_classification':
metric_fn(logits, label)
else:
metric_fn(torch.argmax(logits, 1), label)
return loss.item(), self.model, self.metrics_dict
def train_step(self, batch):
self.model.train()
return self.step(batch)
@torch.no_grad()
def eval_step(self, batch):
self.model.eval()
return self.step(batch)
def __call__(self, batch):
if self.stage == "train":
return self.train_step(batch)
else:
return self.eval_step(batch)
class EpochRunner:
def __init__(self, steprunner):
self.steprunner = steprunner
self.stage = steprunner.stage
self.args = steprunner.args
def __call__(self, dataloader):
loop = tqdm(dataloader, total=len(dataloader), file=sys.stdout)
total_loss = 0
for batch in loop:
step_loss, model, metrics_dict = self.steprunner(batch)
step_log = dict({f"{self.stage}/loss": round(step_loss, 3)})
if self.args.wandb and self.stage == "train":
wandb.log({f"train/loss": step_loss, "train/epoch": self.args.epoch_idx})
loop.set_postfix(**step_log)
total_loss += step_loss
epoch_metric_results = {}
if self.stage != "train":
for name, metric_fn in metrics_dict.items():
epoch_metric_results[f"{self.stage}/{name}"] = metric_fn.compute().item()
metric_fn.reset()
avg_loss = total_loss / len(dataloader)
epoch_metric_results[f"{self.stage}/loss"] = avg_loss
return model, epoch_metric_results
def train_model(args, model,
optimizer, scheduler, loss_fn,
accelerator=None, metrics_dict=None,
train_data=None, valid_data=None, test_data=None,
monitor="valid/loss", mode="min"):
history = {}
start_epoch = 1
model_path = os.path.join(args.output_model_dir, args.output_model_name)
logger.info("***** Running training *****")
if args.auto_continue_train:
history_df = pd.read_csv(os.path.join(args.output_model_dir, "history.csv"))
names = history_df.columns
model.pooling_head.load_state_dict(torch.load(model_path)["state_dict"])
if args.epoch_idx:
logger.info(f" Train from epoch_idx = {args.epoch_idx} ")
else:
if mode == "min":
args.epoch_idx = int(history_df[history_df[monitor] == history_df[monitor].min()]["epoch"])
elif mode == "max":
args.epoch_idx = int(history_df[history_df[monitor] == history_df[monitor].max()]["epoch"])
logger.info(f" Auto continue to train from epoch_idx = {args.epoch_idx} ")
for name in names:
history[name] = list(history_df[name][:int(args.epoch_idx)])
start_epoch += args.epoch_idx
for epoch in range(start_epoch, args.num_train_epochs + 1):
printlog(f"Epoch {epoch} / {args.num_train_epochs}")
args.epoch_idx = epoch
# 1,train -------------------------------------------------
train_step_runner = StepRunner(
args=args, stage="train", model=model,
loss_fn=loss_fn, accelerator=accelerator,
metrics_dict=deepcopy(metrics_dict),
optimizer=optimizer, scheduler=scheduler
)
train_epoch_runner = EpochRunner(train_step_runner)
model, epoch_metric_results = train_epoch_runner(train_data)
for name, metric in epoch_metric_results.items():
history[name] = history.get(name, []) + [metric]
# 2,validate -------------------------------------------------
if valid_data:
val_step_runner = StepRunner(
args=args, stage="valid", model=model,
loss_fn=loss_fn, accelerator=accelerator,
metrics_dict=deepcopy(metrics_dict),
optimizer=optimizer, scheduler=scheduler
)
val_epoch_runner = EpochRunner(val_step_runner)
with torch.no_grad():
model, epoch_metric_results = val_epoch_runner(valid_data)
if args.wandb:
wandb.log({name: metric for name, metric in epoch_metric_results.items()})
for name, metric in epoch_metric_results.items():
print(f">>> Epoch {epoch} {name}: {'%.3f'%metric}")
epoch_metric_results["epoch"] = epoch
for name, metric in epoch_metric_results.items():
history[name] = history.get(name, []) + [metric]
# 3,early-stopping -------------------------------------------------
arr_scores = history[monitor]
best_score_idx = np.argmax(arr_scores) if mode == "max" else np.argmin(arr_scores)
if best_score_idx == len(arr_scores) - 1:
torch.save({
"state_dict": model.pooling_head.state_dict(),
"epoch": epoch,
"history": history,
}, model_path)
print(f">>> reach best {monitor} : {'%.3f'%arr_scores[best_score_idx]}")
history_df = pd.DataFrame(history)
history_df.to_csv(os.path.join(args.output_model_dir, "history.csv"), index=False)
if args.patience > 0 and len(arr_scores) - best_score_idx > args.patience:
print(f">>> {monitor} without improvement in {args.patience} epoch, early stopping")
break
# 4,test -------------------------------------------------
if test_data:
model.pooling_head.load_state_dict(torch.load(model_path)['state_dict'])
test_step_runner = StepRunner(
args=args, stage="test", model=model,
loss_fn=loss_fn, accelerator=accelerator,
metrics_dict=deepcopy(metrics_dict),
optimizer=optimizer, scheduler=scheduler
)
test_epoch_runner = EpochRunner(test_step_runner)
with torch.no_grad():
model, epoch_metric_results = test_epoch_runner(test_data)
for name, metric in epoch_metric_results.items():
print(f">>> Epoch {epoch} {name}: {'%.3f'%metric}")
if args.wandb:
wandb.log({name: metric for name, metric in epoch_metric_results.items()})
def create_parser():
parser = argparse.ArgumentParser()
# model config
parser.add_argument("--gnn", type=str, default="egnn", help="gat, gcn or egnn")
parser.add_argument("--gnn_config", type=str, default="src/config/egnn.yaml", help="gnn config")
parser.add_argument("--gnn_hidden_dim", type=int, default=512, help="hidden size of gnn")
parser.add_argument("--plm", type=str, default="facebook/esm2_t33_650M_UR50D", help="esm param number")
parser.add_argument("--gnn_model_path", type=str, default="", help="gnn model path")
parser.add_argument("--plm_hidden_size", type=int, default=1280, help="hidden size of plm")
parser.add_argument("--pooling_method", type=str, default="mean", help="pooling method")
parser.add_argument("--pooling_dropout", type=float, default=0.1, help="pooling dropout")
# training strategy
parser.add_argument("--seed", type=int, default=3407, help="random seed")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="learning rate")
parser.add_argument("--weight_decay", type=float, default=1e-2, help="weight_decay")
parser.add_argument("--num_train_epochs", type=int, default=50, help="number of epochs to train")
parser.add_argument("--epoch_idx", type=int, default=0, help="the idx of epoch to continue training")
parser.add_argument("--auto_continue_train", action="store_true", help="auto extract epoch idx from history")
parser.add_argument("--batch_token_num", type=int, default=4096, help="how many tokens in one batch")
parser.add_argument("--max_graph_token_num", type=int, default=3000, help="max token num a graph has")
parser.add_argument("--patience", type=int, default=0, help="early stopping patience")
parser.add_argument("--max_grad_norm", type=float, default=None, help="clip grad norm")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="gradient accumulation steps")
# dataset
parser.add_argument("--num_labels", type=int, help="number of labels")
parser.add_argument("--problem_type", type=str, default="single_label_classification", help="classification or regression")
parser.add_argument("--supv_dataset", type=str, help="supervise protein dataset")
parser.add_argument('--pdb_dir_name', type=str, default="esmfold_pdb", help="pdb dir name")
parser.add_argument("--train_file", type=str, help="train label file")
parser.add_argument("--valid_file", type=str, help="valid label file")
parser.add_argument("--test_file", type=str, help="test label file")
parser.add_argument('--metrics', type=str, default=None, help='computation metrics')
parser.add_argument('--monitor', type=str, default='valid/loss', help='monitor metrics')
parser.add_argument('--monitor_mode', type=str, default='min', help='monitor mode')
parser.add_argument("--c_alpha_max_neighbors", type=int, default=10, help="graph dataset K")
# save model
parser.add_argument("--output_model_dir", type=str, default="model", help="model save dir")
parser.add_argument("--output_model_name", type=str, default=None, help="model name")
# log
parser.add_argument("--wandb", action="store_true", help="use wandb")
parser.add_argument("--wandb_project", type=str, default="protssn", help="wandb project name")
parser.add_argument("--wandb_run_name", type=str, default=None, help="wandb run name")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = create_parser()
args.gnn_config = yaml.load(open(args.gnn_config), Loader=yaml.FullLoader)[args.gnn]
args.gnn_config["hidden_channels"] = args.gnn_hidden_dim
set_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# init wandb
if args.wandb:
if args.wandb_run_name is None:
args.wandb_run_name = f"ProtSSN-task"
if args.output_model_name is None:
args.output_model_name = f"{args.wandb_run_name}.pt"
wandb.init(project=args.wandb_project, name=args.wandb_run_name, config=vars(args))
# load dataset
logger.info("***** Loading Dataset *****")
datatset_name = args.supv_dataset.split("/")[-1]
pdb_dir = f"{args.supv_dataset}/{args.pdb_dir_name}"
graph_dir = f"{datatset_name}_k{args.c_alpha_max_neighbors}"
supervise_dataset = SuperviseDataset(
root=args.supv_dataset,
raw_dir=pdb_dir,
name=graph_dir,
c_alpha_max_neighbors=args.c_alpha_max_neighbors,
pre_transform=NormalizeProtein(
filename=f'norm/cath_k{args.c_alpha_max_neighbors}_mean_attr.pt'
),
)
label_dict = {}
def get_dataset(df):
names, node_nums = [], []
for name, label, seq in zip(df["name"], df["label"], df["sequence"]):
names.append(name)
label_dict[name] = label
node_nums.append(len(seq))
return names, node_nums
args.train_file = f"{args.supv_dataset}/train.csv"
args.valid_file = f"{args.supv_dataset}/valid.csv"
args.test_file = f"{args.supv_dataset}/test.csv"
train_names, train_node_nums = get_dataset(pd.read_csv(args.train_file))
valid_names, valid_node_nums = get_dataset(pd.read_csv(args.valid_file))
test_names, test_node_nums = get_dataset(pd.read_csv(args.test_file))
def process_data(name):
data = torch.load(f"{args.supv_dataset}/{graph_dir.capitalize()}/processed/{name}.pt")
data.label = torch.tensor(label_dict[name]).view(1)
return data
def collect_fn(batch):
batch_data = []
with ThreadPoolExecutor(max_workers=16) as executor:
futures = [executor.submit(process_data, name) for name in batch]
for future in as_completed(futures):
graph = future.result()
batch_data.append(graph)
return batch_data
train_dataloader = DataLoader(
dataset=train_names, num_workers=4,
collate_fn=lambda x: collect_fn(x),
batch_sampler=BatchSampler(
node_num=train_node_nums,
max_len=args.max_graph_token_num,
batch_token_num=args.batch_token_num,
shuffle=True
)
)
valid_dataloader = DataLoader(
dataset=valid_names, num_workers=4,
collate_fn=lambda x: collect_fn(x),
batch_sampler=BatchSampler(
node_num=valid_node_nums,
max_len=args.max_graph_token_num,
batch_token_num=args.batch_token_num,
shuffle=False
)
)
test_dataloader = DataLoader(
dataset=test_names, num_workers=4,
collate_fn=lambda x: collect_fn(x),
batch_sampler=BatchSampler(
node_num=test_node_nums,
max_len=args.max_graph_token_num,
batch_token_num=args.batch_token_num,
shuffle=False
)
)
logger.info("***** Load Model *****")
# load model
plm_model = PLM_model(args)
gnn_model = GNN_model(args)
gnn_model.load_state_dict(torch.load(args.gnn_model_path))
protssn_classification = ProtssnClassification(args, plm_model, gnn_model)
protssn_classification.to(device)
if args.problem_type == "single_label_classification":
loss_fn = torch.nn.CrossEntropyLoss()
elif args.problem_type == "regression":
loss_fn = nn.MSELoss()
elif args.problem_type == "multi_label_classification":
loss_fn = nn.BCEWithLogitsLoss()
for param in plm_model.parameters():
param.requires_grad = False
for param in gnn_model.parameters():
param.requires_grad = False
logger.info(total_param_num(protssn_classification))
logger.info(param_num(protssn_classification))
optimizer = torch.optim.AdamW(
protssn_classification.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay
)
scheduler = None
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
protssn_classification, optimizer, train_dataloader, valid_dataloader, test_dataloader = accelerator.prepare(
protssn_classification, optimizer, train_dataloader, valid_dataloader, test_dataloader
)
metrics_dict = {}
metrics_names = args.metrics.split(',')
for m in metrics_names:
if m == 'acc':
if args.num_labels == 2:
metrics_dict[m] = BinaryAccuracy()
else:
metrics_dict[m] = Accuracy(task="multiclass", num_classes=args.num_labels)
elif m == 'recall':
if args.num_labels == 2:
metrics_dict[m] = BinaryRecall()
else:
metrics_dict[m] = Recall(task="multiclass", num_classes=args.num_labels)
elif m == 'precision':
if args.num_labels == 2:
metrics_dict[m] = BinaryPrecision()
else:
metrics_dict[m] = Precision(task="multiclass", num_classes=args.num_labels)
elif m == 'f1':
if args.num_labels == 2:
metrics_dict[m] = BinaryF1Score()
else:
metrics_dict[m] = F1Score(task="multiclass", num_classes=args.num_labels)
elif m == 'mcc':
if args.num_labels == 2:
metrics_dict[m] = BinaryMatthewsCorrCoef()
else:
metrics_dict[m] = MatthewsCorrCoef(task="multiclass", num_classes=args.num_labels)
elif m == 'auc':
if args.num_labels == 2:
metrics_dict[m] = BinaryAUROC()
else:
metrics_dict[m] = AUROC(task="multiclass", num_classes=args.num_labels)
elif m == 'spearman_corr':
metrics_dict[m] = SpearmanCorrCoef()
else:
raise ValueError(f"Invalid metric: {m}")
for metric_name, metric in metrics_dict.items():
metric.to(device)
os.makedirs(args.output_model_dir, exist_ok=True)
with open(os.path.join(args.output_model_dir, "config.json"), 'w', encoding='utf-8') as f:
json.dump(vars(args), f, ensure_ascii=False)
logger.info("***** Running training *****")
logger.info(" Num train examples = %d", len(train_names))
logger.info(" Num valid examples = %d", len(valid_names))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Batch token num = %d", args.batch_token_num)
logger.info(
" Total train batch token num (w. parallel, distributed & accumulation) = %d",
args.batch_token_num
* args.gradient_accumulation_steps
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
train_model(
args=args, model=protssn_classification,
optimizer=optimizer, scheduler=scheduler, loss_fn=loss_fn,
accelerator=accelerator, metrics_dict=metrics_dict,
train_data=train_dataloader, valid_data=valid_dataloader, test_data=test_dataloader,
monitor=args.monitor, mode=args.monitor_mode
)
if args.wandb:
wandb.finish()