-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathwbf.py
77 lines (66 loc) · 2.3 KB
/
wbf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import pandas as pd
import os
from PIL import Image
from tqdm import tqdm
from ensemble_boxes import *
def xywh2x1y1x2y2(bbox):
x1 = bbox[0] - bbox[2]/2
x2 = bbox[0] + bbox[2]/2
y1 = bbox[1] - bbox[3]/2
y2 = bbox[1] + bbox[3]/2
return ([x1,y1,x2,y2])
def x1y1x2y22xywh(bbox):
x = (bbox[0] + bbox[2])/2
y = (bbox[1] + bbox[3])/2
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
return ([x,y,w,h])
IMG_PATH = '/VisDrone2019-DET-test-challenge/images/'
TXT_PATH = './runs/val/'
OUT_PATH = './runs/wbf_labels/'
MODEL_NAME = os.listdir(TXT_PATH)
# MODEL_NAME = ['test1','test2']
# ===============================
# Default WBF config (you can change these)
iou_thr = 0.67 #0.67
skip_box_thr = 0.01
# skip_box_thr = 0.0001
sigma = 0.1
# boxes_list, scores_list, labels_list, weights=weights,
# ===============================
image_ids = os.listdir(IMG_PATH)
for image_id in tqdm(image_ids, total=len(image_ids)):
boxes_list = []
scores_list = []
labels_list = []
weights = []
for name in MODEL_NAME:
box_list = []
score_list = []
label_list = []
txt_file = TXT_PATH + name + '/labels/' + image_id.replace('jpg', 'txt')
if os.path.exists(txt_file):
# if os.path.getsize(txt_file) > 0:
txt_df = pd.read_csv(txt_file,header=None,sep=' ').values
for row in txt_df:
box_list.append(xywh2x1y1x2y2(row[1:5]))
score_list.append(row[5])
label_list.append(int(row[0]))
boxes_list.append(box_list)
scores_list.append(score_list)
labels_list.append(label_list)
weights.append(1.0)
else:
continue
# print(txt_file)
boxes, scores, labels = weighted_boxes_fusion(boxes_list, scores_list, labels_list, weights=weights, iou_thr=iou_thr, skip_box_thr=skip_box_thr)
if not os.path.exists(OUT_PATH):
os.makedirs(OUT_PATH)
out_file = open(OUT_PATH + image_id.replace('jpg', 'txt'), 'w')
for i,row in enumerate(boxes):
img = Image.open(IMG_PATH + image_id)
img_size = img.size
bbox = x1y1x2y22xywh(row)
out_file.write(str(int(labels[i]+1)) + ' ' +" ".join(str(x) for x in bbox) + " " + str(round(scores[i],6)) + '\n')
out_file.close()