forked from quic/ai-hub-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
60 lines (52 loc) · 2.08 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# ---------------------------------------------------------------------
# Copyright (c) 2024 Qualcomm Innovation Center, Inc. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# ---------------------------------------------------------------------
from qai_hub_models.models.ddrnet23_slim.app import DDRNetApp
from qai_hub_models.models.ddrnet23_slim.model import (
MODEL_ASSET_VERSION,
MODEL_ID,
DDRNet,
)
from qai_hub_models.utils.args import (
demo_model_from_cli_args,
get_model_cli_parser,
get_on_device_demo_parser,
validate_on_device_demo_args,
)
from qai_hub_models.utils.asset_loaders import CachedWebModelAsset, load_image
from qai_hub_models.utils.display import display_or_save_image
from qai_hub_models.utils.image_processing import pil_resize_pad, pil_undo_resize_pad
INPUT_IMAGE_ADDRESS = CachedWebModelAsset.from_asset_store(
MODEL_ID, MODEL_ASSET_VERSION, "test_input_image.png"
)
# Run DDRNet end-to-end on a sample image.
# The demo will display a image with the predicted segmentation map overlaid.
def main(is_test: bool = False):
# Demo parameters
parser = get_model_cli_parser(DDRNet)
parser = get_on_device_demo_parser(parser, add_output_dir=True)
parser.add_argument(
"--image",
type=str,
default=INPUT_IMAGE_ADDRESS,
help="image file path or URL",
)
args = parser.parse_args([] if is_test else None)
model = demo_model_from_cli_args(DDRNet, MODEL_ID, args)
validate_on_device_demo_args(args, MODEL_ID)
# Load image
(_, _, height, width) = DDRNet.get_input_spec()["image"][0]
orig_image = load_image(args.image)
image, scale, padding = pil_resize_pad(orig_image, (height, width))
print("Model Loaded")
app = DDRNetApp(model)
output = app.segment_image(image)[0]
if not is_test:
# Resize / unpad annotated image
image_annotated = pil_undo_resize_pad(output, orig_image.size, scale, padding)
display_or_save_image(
image_annotated, args.output_dir, "ddrnet_demo_output.png"
)
if __name__ == "__main__":
main()