-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabout.html
179 lines (175 loc) · 9.42 KB
/
about.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>About - SDLDpred</title>
<link rel = "stylesheet" type = "text/css" href = "css/main.css" />
<style>
li{
width: 70%;
margin: 20px 15% 20px 15%;
font-size: 1.2em;
}
img{
max-width: 100%;
}
</style>
</head>
<body>
<div class = "section_header">
<center><p class="title">SDLDpred - Symptom-based Drugs of Lifestyle-related Diseases prediction</p></center>
</div>
<div class = "section_menu">
<center>
<table cellpadding="3px">
<tr class="nav">
<td class="nav"><a href="index.html" class="side_nav">Home</a></td>
<td class="nav"><a href="#" class="active">About</a></td>
<td class="nav"><a href="help.html" class="side_nav">Help</a></td>
<td class="nav"><a href="team.html" class="side_nav">Team</a></td>
</tr>
</table>
</center>
</div>
<!--<div class = "section_left"></div>-->
<div class = "section_middle">
<ul>
<li>
<b>SDLDpred</b> is a web-based tool for prediction of drugs of
lifestyle-related diseases from symptom data.
</li>
<li>
It used <i>unsupervised machine learning</i> models trained with <i>Bisecting
K-Means</i> algorithm using drug-symptom association data of <b>143
lifestyle-related diseases</b>, with focus on pulmonary and cardiovascular
diseases. A summary of the diseases are given in the following table.
<br/><br/>
<table class = "details" border = "0" id = "dtable">
<tr>
<th>Disease category</th>
<th>Number of diseases</th>
</tr>
<tr>
<td>Pulmonary diseases</td>
<td>67</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>56</td>
</tr>
<tr>
<td>Musculoskeletal diseases</td>
<td>15</td>
</tr>
<tr>
<td>Diabetes</td>
<td>4</td>
</tr>
<tr>
<td>Obesity</td>
<td>1</td>
</tr>
<tr>
<th>Total</th>
<td><b>143</b></td>
</tr>
</table>
<center>
<b>List of diseases:</b> <a href="resource/data/disease_category.tsv">Download</a> [<i>TSV</i> file];
<b>List of drugs:</b> <a href="resource/data/drugs.tsv">Download</a> [<i>TSV</i> file];
<b>List of symptoms:</b> <a href="resource/data/symptoms.tsv">Download</a> [<i>TSV</i> file]
</center>
</li>
<li>
<b>Association datasets:</b>
<br/><br/>
<table class = "details" border = "0" id = "atable">
<tr>
<th>Association</th>
<th>Data source</th>
<th>Description</th>
<th>Download</th>
</tr>
<tr>
<td><b>Drug-disease associations</b></td>
<td>Comparative Toxicogenomics Database (CTD)</td>
<td>3159 associations; 1271 drugs; 143 diseases</td>
<td>
<b>Matrix <i>(TSV file)</i></b> <a href="resource/data/drug_disease_association_matrix.tsv">Download</a><br/>
<b>Edge-list <i>(TSV file)</i></b> <a href="resource/data/drug_disease_association_edgelist.tsv">Download</a>
</td>
</tr>
<tr>
<td><b>Symptom-disease associations</b></td>
<td>Human Symptom Disease Network (HSDN)</td>
<td>9466 associations; 305 symptoms; 143 diseases</td>
<td>
<b>Matrix <i>(TSV file)</i></b> <a href="resource/data/symptom_disease_association_matrix.tsv">Download</a><br/>
<b>Edge-list <i>(TSV file)</i></b> <a href="resource/data/symptom_disease_association_edgelist.tsv">Download</a>
</td>
</tr>
</table>
</li>
<li>
The <b>drug-symptom associations</b> were computed based on
(i) <i>cosine similarity</i> ( <i style="font-family: serif;">A<sub>drug-symptom<cosine></sub></i> ),
(ii) <i>Pearson's Correlation Coefficient</i> ( <i style="font-family: serif;">A<sub>drug-symptom<pearson></sub></i> ),
and
(iii) <i>Jacard similarity</i> ( <i style="font-family: serif;">A<sub>drug-symptom<jaccard></sub></i> )
between each drug and symptom represented as a vector of
disease-associations.
<center><img src="resource/about1.jpg" height="45px" width="auto" /></center>
<center><img src="resource/about2.jpg" height="50px" width="auto" /></center>
<center><img src="resource/about3.jpg" height="50px" width="auto" /></center>
<i style="font-family: serif;">dr<sub>i</sub></i> =
<i style="font-family: serif;">i<sup>th</sup></i> drug represented as a vector
of associations with the diseases,
<i style="font-family: serif;">s<sub>j</sub></i> =
<i style="font-family: serif;">j<sup>th</sup></i> symptom represented as a
vector of associations with the diseases,
<i style="font-family: serif;">||x||</i> = Magnitude of the vector
<i style="font-family: serif;">x</i>.<br/><br/>
The drug-symptom association dataset:
<table class = "details" border = "0" id = "dsatable">
<tr>
<td><i style="font-family: serif;">A<sub>drug-symptom<cosine></sub></i></td>
<td>
<a href="resource/data/drug_symptom_association_cosine_matrix.tsv">Download</a> [Matrix (TSV file)]<br/>
<a href="resource/data/drug_symptom_association_cosine_edge_list.tsv">Download</a> [Edge-list (TSV file)]
</td>
</tr>
<tr>
<td><i style="font-family: serif;">A<sub>drug-symptom<pearson></sub></i></td>
<td>
<a href="resource/data/drug_symptom_association_pearson_matrix.tsv">Download</a> [Matrix (TSV file)]<br/>
<a href="resource/data/drug_symptom_association_pearson_edge_list.tsv">Download</a> [Edge-list (TSV file)]
</td>
</tr>
<tr>
<td><i style="font-family: serif;">A<sub>drug-symptom<jaccard></sub></i></td>
<td>
<a href="resource/data/drug_symptom_association_jaccard_matrix.tsv">Download</a> [Matrix (TSV file)]<br/>
<a href="resource/data/drug_symptom_association_jaccard_edge_list.tsv">Download</a> [Edge-list (TSV file)]
</td>
</tr>
</table>
</li>
<li>
SDLDpred provides a <b>confidence score</b> for each predicted drug. It is
computed using the following equation.
<center><img src="resource/about4.jpg" height="60px" width="auto" /></center>
<i style="font-family: serif;">D</i> = random variable denoting the pairwise
euclidean distances between the drugs; <i style="font-family: serif;">e</i> =
euclidean distance of a predicted drug;
<i style="font-family: serif;">f<sub>dist</sub></i> = probability density
function of the random variable <i style="font-family: serif;">D</i>.
</li>
</ul>
<br/><hr/>
<p style="font-size:0.8em;text-align:center;">
Please contact Dr. Sudipto Saha (<a href="mailto:ssaha4@jcbose.ac.in">ssaha4@jcbose.ac.in</a>,
<a href="mailto:ssaha4@gmail.com">ssaha4@gmail.com</a>) regarding any further queries.
</p>
</div>
</body>
</html>