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TREE BALANCE

KwANG-TSAO SHAO! AND ROBERT R. SOKAL

Department of Ecology and Evolution, State University of New York,
Stony Brook, New York 11794-5245

Abstract.—Hierarchic classifications can differ with respect to tree balance—the degree to which
branches divide the subtended taxa into subsets of equal size. Several indices, sensitive to
different aspects of tree balance, are compared. Extensions of these indices to multifurcating
trees and to trees with varying numbers of OTUs are proposed, and suggestions for employing
these indices are furnished. Different tree-forming algorithms may result in trees with differing
degrees of balance no matter which index is computed. Tree balance is an important consideration
for phylogenetic systematics, because balance of the true phylogeny will affect the accuracy of
its estimates. [Tree balance; tree symmetry; tree asymmetry; comparing classifications.]

Trees differ in the degree to which
branches divide the subtended taxa into
subsets of equal size. Several terms have
appeared in the literature to describe this
aspect of tree form: shape, form, symmetry
(or asymmetry), balance (or imbalance), and
skewness. Rohlf and Fisher (1968) used the
general terms form and shape to cover the
meaning of tree balance. Some authors have
used shape to refer to tree topology (Farris,
1973; Dobson, 1975; Smith and Waterman,
1980; Fowlkes et al., 1983). However, these
papers were not concerned with the degree
of balance or shape, but with the consensus
or distance between two trees. Savage
(1983) estimated probabilities associated
with various tree shapes or topologies of
binary trees in three different ways. Micke-
vich and Platnick (1989) took the symmetry
or the pectinate arrangement into consider-
ation in their studies on the information
content of classifications. We prefer the
term tree balance as being truest to the prop-
erty we describe below and least likely to
lead to semantic confusion with other
properties of trees.

Common sense notions of tree balance
lead to the recognition of balance as in-
dicating equal numbers of included ter-
minal nodes for both branches of the var-
ious furcations (interior nodes) of a
dendrogram. By contrast, imbalance is the

! Present address: Institute of Zoology, Academia
Sinica, Nankang, Taipei, Taiwan, R.O.C.

opposite property—unequal numbers of
included terminal nodes. By such a crite-
rion, tree 1 in Figure 1 is the most balanced
and tree 6 the most unbalanced tree among
the first six trees, which have the same
number of interior nodes. Trees showing
the most unbalanced or asymmetrical
structure are often referred to as pectinate,
comblike, chained, or linear. A more pre-
cise definition of balance or imbalance will
vary depending on the specific aspects of
this property measured by a given index.
Such indices and the nature of the tree
balance or imbalance they describe will be
discussed below.

Several indices have been proposed to
describe the balance or imbalance of a den-
drogram. Sackin (1972) used a b (for
branching) vector to characterize a pheno-
gram and measure its “useful properties.”
He claimed that “The balanced phenogram
looks ‘better’ than the skewed one because
(1) fewer taxonomic categories need to be
postulated; and (2) the cluster sizes at any
category level are more constant.” Colless
(1982) proposed an index to demonstrate
that the Hennigian cladograms in Wiley’s
(1981) book are highly unbalanced. Both
of these indices measure tree imbalance,
because their values will be higher the
more unbalanced the trees. Astolfi et al.
(1981), using a linearity index, demonstrat-
ed that tree form will affect the accuracy
of reconstructing an unrooted tree. F. Mur-
tagh (in an unpublished manuscript dated
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All 33 possible unlabeled rooted trees for six OTUs. The numbers of interior nodes (including the

root) for trees 1-6, 7-18, 19-28, 29-32, and 33 are 5, 4, 3, 2, and 1, respectively.

1982) developed a complicated “structure
coefficient” to measure tree balance and
prove that different phenetic clustering
methods will result in phenograms with
different shapes. The last two indices are
not considered further in this paper be-
cause the former was originally defined for
an unrooted tree only and the latter re-
quires a fully bifurcating tree, so its use-
fulness is restricted. Fowlkes et al. (1983)
developed a parameter a to specify tree
shape and demonstrated by simulation that
single linkage clustering will result in a

more unbalanced tree than complete link-
age clustering. This parameter is also not
employed in this paper because (1) it is
computationally complex and (2) it applies
only to binary trees with particular tree
topologies.

Tree balance plays an important role in
various types of numerical taxonomic stud-
ies. The balance of the trees being analyzed
can affect the results when different nu-
merical taxonomic methods are compared
(Rohlf et al., 1983; Shao, 1983; Sokal, 1983).
Sokal (1983) included shape measurements
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among a series of tree characteristics to ar-
gue that the true tree of the Caminalcules,
as well as estimates thereof, does not differ
from estimated trees constructed for real
organisms. Tree balance may also be in-
terpreted phylogenetically. For example, it
may reflect differences in extinction or spe-
ciation rate during phylogeny—a balanced
tree implies more equal extinction and spe-
ciation rates than an unbalanced tree. Grant
(1963) has proposed “directed speciation”
as a mechanism resulting in a more un-
balanced tree. By contrast, Raup and
Gould’s (1974) ““phylogenetic drift,” in
which the direction of speciation is ran-
dom, appears to yield a more balanced tree.
Stanley (1979:135) questioned the likeli-
hood of a comblike tree existing in the real
world. To obtain such a tree, one branch
at each furcation should have a high prob-
ability of speciation soon after forming,
followed by a low speciation probability
after forming the new lineage. Phyloge-
neticists who construct their classifications
based on synapomorphies frequently ob-
tain cladograms in the shape of a “Hen-
nigian comb.” Such trees are often pro-
duced by paleontologists as well. It is of
great interest to systematists whether such
tree shapes reflect patterns of speciation or
possible biases of the estimation method.
It is obvious that neither of these aspects
of tree estimation can be investigated un-
less a suitable measure of tree balance is
developed. Of equal concern to those wish-
ing to estimate phylogenies is the finding
by Rohlf et al. (1990) that the amount of
imbalance of true phylogenetic trees af-
fects the accuracy with which they can be
estimated by different methods.

Other recent papers relating to tree bal-
ance are connected to consensus methods
used to compare classifications. For in-
stance, two consensus indices—Micke-
vich’s (1980) index (CI,,) and levels sum
(Schuh and Farris, 1981)—have a maxi-
mum possible value that is a function of
shape of the consensus tree (Rohlf, 1982).
Consensus indices related to term infor-
mation (Nelson and Platnick, 1981) are bi-
ased by tree balance (Shao and Rohlf, 1983),
termed tree shape in this reference. Shao

(1983) showed that the three consensus in-
dices—term information, total informa-
tion (Nelson and Platnick, 1981), and lev-
els sum—are all algebraically derivable
from one of the imbalance indices dis-
cussed below. In view of their dependence
on tree balance, the usefulness of some
consensus indices for measuring consen-
sus information can be questioned. Fur-
thermore, understanding how to measure
tree balance is an essential step toward un-
derstanding why different numerical tax-
onomic techniques will result in differing
distributions of consensus indices.

In this paper we propose two balance
indices and compare their properties with
those of two imbalance indices introduced,
respectively, by M. J. Sackin and D. H. Col-
less.

FOUR MEASURES OF TREE BALANCE

We shall designate balance indices by B
and indices measuring imbalance by I. For
an explanation and comparison of various
balance and imbalance indices, consider
Figure 1, which shows all 33 possible un-
labeled rooted trees for six OTUs, exclud-
ing trees with vertices of degree 2 (i.e.,
with nodes connected to only two other
nodes). Four different indices are exam-
ined here. Two indices, I;(1) and I.(1), mea-
sure the imbalance of the tree; the other
two, B,(1) and B,(1), proposed here, are bal-
ance indices. The postscript (1) refers to
their original formulations. Other formu-
lations, designated (2), (3), and (*), will be
introduced later.

Let t be the number of terminal nodes
(OTUs) in a rooted tree and k the number
of furcations (interior nodes) including the
root. Quantity k can vary between 1 and
t — 1. Its upper bound will depend on the
resolution of the tree, with the maximum
value, ¢ — 1, reached only in a fully bifur-
cating tree. We designate N, as the number
of interior nodes between terminal node i
and the root, which is included in the count.
Thus, N, = 4 for the leftmost terminal node
in tree 3 of Figure 1. Then Sackin’s (1972)
index is defined as

L=N, i=1...,t ()
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We designate as T; the absolute differ-
ence in number of terminal nodes sub-
tended by the two branches of bifurcation
j- Thus, T; for the root of tree 3 in Figure
1 has the value |4 — 2| = 2. The index
described by Colless (1982) can be stated
as

IM=2T j=1...k3), @

where k(3) is the number of interior nodes
of degree 3 (bifurcations). In a fully bifur-
cating tree k = k(3).

The third index is based on the k — 1
interior nodes excluding the root. For each
furcation j, let us consider that furcation
to be the root of the subset of terminal
nodes (OTUs) subtended by it. We define
M; = max N, (as defined above), where the
maximum is computed over the subset of
OTUs i subtended by j. For the subset in-
cluding the first five OTUs in tree 17 of
Figure 1, M, = 3; for a similar subset in tree
6, M; = 4. The index is defined as

B.(1) = 2 (1/M))

j=1,...,k—1( # root), 3)

where the summation is over all interior
nodes other than the root of the entire tree.
For tree 17 in Figure 1, we compute (from
the top) B,(1) =% + % + % = 1.833.

The fourth index evaluates the proba-
bility -of reaching terminal node i starting
at the root, assuming equiprobable branch-
ing at each interior node. The probabili-
ty is
p,= H [ll(dj - 1)]

j

j=ll"'lNil (4)

where d, is the degree of interior node j.
In the special case of a completely bifur-
cating tree, the formula simplifies to

P, = (), (4A)

because all furcations are of degree 3. Us-
ing Equation 4 we obtain P, for the leftmost
terminal node of tree 16 in Figure 1 as
(from the root) %, x % x % x % =1,. For
the leftmost terminal node of tree 6 in Fig-
ure 1 (by Equation 4A because it is fully
bifurcating), we obtain P; = (}4)° = 0.03125.

To develop an index of balance, we com-
pute the Shannon-Wiener information
function as

B(l)=—D> PlogP, i=1,...,t (5

This measures the equitability of the prob-
abilities of arriving at the terminal nodes
of the tree. For tree 1 in Figure 1 this would
yield —[4(% log %) + 2(% log %)] = 0.7526.

Indices L, I, and B, have been referred
to previously as BSUM, COLLESS or SI,,
and SHAO, respectively (Sokal, 1983; Rohlf
et al., 1990). I(1) was originally defined
for fully bifurcating (binary) trees, i.e., trees
where all internal nodes are of degree 3.
The index has been modified for nonbi-
nary trees (those with some internal nodes
of degree >3) by ignoring multifurcating
nodes. The values of these four indices for
the 33 trees of Figure 1 are given in Table
1. Readers can confirm their understand-
ing of Equations 1 through 4 by working
out several of the values. Note that B,(1)
and B,(1) were designed to measuré bal-
ance, whereas the other two indices mea-
sure imbalance.

The results in Table 1 show that the var-
ious indices measure tree balance or im-
balance differently. For instance, I(1) yields
different values for trees 3-5 and 15-18,
but B,(1) yields the same value for the trees
in each of these subsets; I,(1), I.(1), and
B,(1) yield equal balance for trees 1 and 2,
but index B,(1) indicates tree 1 as more
balanced. These inconsistencies are not in-
herent faults of the indices, but reflect the
fact that they embody different definitions
of balance. Because the evaluation of bal-
ance or imbalance involves abstract and
subjective issues, it is unlikely that every-
one will agree on the same definition.

However, it is still of interest to measure

tree balance by these indices because (1)
different indices will maintain a common
order when certain trees show an unam-
biguous ordering with respect to balance
(in Table 2, e.g., the following trees are
unambiguously ordered by common sense
definitions of balance and by all balance
or imbalance indices: 1 > 5> 6,7 > 11 >
15, and 19 > 26) and (2) different indices
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TaBLE 1. Balance and imbalance indices for the 33 trees in Figure 1. For explanation of indices see text.
No. of interior

Tree no. nodes Is(1) I«1) By(1) Bx(1) Is(*) Bi(*)
1 5 16 2 3.500 0.753 0.000 1.000
2 16 2 3.000 0.753 0.000 0.647
3 17 5 2.833 0.715 0.250 0.529
4 18 6 2.833 0.640 0.500 0.529
5 19 7 2.833 0.602 0.750 0.529
6 20 10 2.083 0.583 1.000 0.000
7 4 12 0 3.000 0.778 0.000 1.000
8 13 1 2.500 0.728 0.167 0.571
9 14 1 2.500 0.765 0.333 0.571
10 14 0 2.500 0.678 0.333 0.571
11 14 2 2.500 0.740 0.333 0.571
12 15 4 2.500 0.640 0.500 0.571
13 15 4 2.500 0.640 0.500 0.571
14 16 5 2.500 0.646 0.667 0.571
15 15 3 1.833 0.653 0.500 0.000
16 16 5 1.833 0.615 0.667 0.000
17 17 7 1.833 0.596 0.833 0.000
18 18 9 1.833 0.586 1.000 0.000
19 3 10 0 2.000 0.753 0.000 1.000
20 11 0 2.000 0.737 0.200 1.000
21 12 2 2.000 0.753 0.400 1.000
22 12 0 2.000 0.778 0.400 1.000
23 15 7 1.500 0.602 1.000 0.000
24 14 4 1.500 0.619 0.800 0.000
25 13 4 1.500 0.646 0.600 0.000
26 13 2 1.500 0.657 0.600 0.000
27 12 0 1.500 0.670 0.400 0.000
28 11 1 1.500 0.715 0.200 0.000
29 2 11 4 1.000 0.651 1.000 0.000
30 10 u? 1.000 0.678 0.667 0.000
31 9 u 1.000 0.721 0.333 0.000
32 8 0 1.000 0.759 0.000 0.000
33 1 6 u 0.000 0.778 0.000 0.000

2 u means the index is undefined for that particular tree because it lacks any bifurcating subsets.

emphasize different aspects of balance and
one can choose among them based on one’s
judgment of which aspects of balance are
more important in a given application.

COMPARING THE BALANCE OF
DIFFERENT TREES

When the investigator wishes to com-
pare different trees for balance or imbal-
ance, the four indices can be used as given
above, so long as the number of OTUs t in
the trees to be compared is the same. How-
ever, when trees with different numbers
of terminal taxa are compared they are no
longer comparable, because the maxima of
the indices change monotonically with an

increase in t. Let us first consider binary
(fully bifurcating) trees. The obvious rem-
edy is a normalization by dividing I(1) or
B(1) by its maximum value for a given ¢.
We designate such normalized indices 1(2)
or B(2). However, this does not completely
solve the problem because the minimum
values of the normalized indices still vary
with OTU number ¢. For example, the min-
imum normalized index I4(2) for 12 OTUs
equals 0.5714; for 16 OTUs, it equals 0.4740;
the value declines monotonically as ¢ in-
creases. Therefore, a further correction is
necessary. We compute

[I(1) — min I(1)])/[max I(1) — min I(1)]

or
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TABLE 2. Ordering of the four balance measures for the 33 trees in Figure 1. Within each group, trees are
ordered from the most to the least balanced. Note that the ordering of I(*) or B(*) equals that of I(1) and B(1).

Number of

interior nodes Index Ordering of trees by their balance
5 I,=I.=B, 1,2>3>4>5>6
B, 1>2>3,45>6
4 I 7>82>91011>12,13,15 > 14,16 > 17,18
I 7,10 > 8,9 > 11> 15> 12,13 > 14,16 > 17 > 18
B, 7 >8,9,10,11,12,13,14 > 15,16,17, 18
B, 7>9>11>8>13>10>15>14>12>16 > 17 > 18
3 I 19 > 20,28 > 21,22,27 > 26 > 24 > 25 > 23
I 19,20,22,27 > 28 > 21,26 > 24,25 > 23
B, 19, 20, 21, 22 > 23, 24, 25, 26, 27, 28
B, 22 >19,21 > 20> 28 > 27 > 26 > 25> 24> 23
2 I, =B, 32 > 31 > 30 > 29
I 30, 31,32 > 29
B, 29=30=31=32
1 I;=I.=B, =B, 33

[B(1) — min B(1)}/[max B(1) — min B(1)]

and call those corrected indices I(3) or B(3),
respectively. These indices will range from
zero to one. In the above formulas, find
min I(1) and max B(1) by computing these
indices for the most balanced tree with a
given number ¢t of OTUs. Similarly, find
max I(1) and min B(1) by employing the
most unbalanced tree for the same number
of OTUs.

Let us now consider multifurcating trees.
With these, I(3) or B(3) occasionally will
become negative, when the most balanced
or unbalanced binary trees needed for
computing min I(1) and min B(1) are more
resolved (i.e., have more interior nodes)
than the multifurcating tree being evalu-
ated. Note that I(1) or B(1) values are
strongly positively correlated with tree
resolution. For instance, in Table 1, maxi-
mal and minimal index values decline with
decreasing interior node number. Conse-
quently, I(1) or B(1) for a largely unre-
solved tree will be smaller than min I(1)
or min B(1) for a fully resolved tree. To
solve both the problems of standardization
and multifurcations, and to have the index
values range between 0.0 and 1.0, the max-
imum and minimum index values in the
above formula for I(3) or B(3) should be
redefined so as to refer to a set of trees with
the same number of interior nodes as the
tree being measured, rather than to a com-

pletely binary tree. An algorithm for cal-
culating the maximum or minimum index
values for trees with the same number of
interior nodes is furnished in the Appen-
dix. The final formulations are denoted as
I(*) and B(*).

COMPARISON OF BALANCE INDICES

As already stated, different indices mea-
sure different aspects of balance (see Tables
1, 2). Table 3a presents the correlation ma-
trix among nine indices based on 100 ran-
domly generated multifurcating trees for
t = 10 OTUs. (An algorithm for randomly
and equiprobably generating trees con-
taining multifurcations as well as bifur-
cations was given by Oden and Shao
[1984].) Table 3b is the correlation matrix
among the six indices of Table 2 over the
33 trees of Figure 1. The correlations among
I(1), I(2), and I(3), or B(1), B(2), and B(3),
for each index are all 1.0 (the second for-
mulation for each index is not shown to
conserve space). This means that the three
versions of each index preserve the prop-
erty of each balance measure without dis-
tortion. Even for the final formulations I(*)
and B(*), the correlation with I(1) and B(1)
is still high (Table 3a), unless there are
many unresolved trees. Such trees tend to
lower the correlation between I(1) and I(*)
or B(1) and B(*) because low tree resolu-
tion (number of interior nodes) tends to
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TasLE 3. Correlation matrix among (a) nine indices over 100 randomly generated multifurcating trees; (b)
six indices over the 33 trees of Figure 1.

(a)

I(1) 1) Bi(1) B2(1) 15(3) Bi(3) B3 1)
1(1) 0.965
B,(1) —0.444 —0.519
By(1) —-0.799 —0.794 0712
1(3) 1.000 0.965 —0.444 —-0.799
B.(3) —0.444 -0.519 1.000 0.712 —0.444
B,(3) —-0.799 —0.794 0.712 1.000 —-0.799 0712
1(*) 0.863 0.891 —0.775 -0.930 0.863 ~0.775 —0.930
B.(*) —0.667 —0.702 0.934 0.785 —0.667 0.934 0.785 —0.845
(b)
(1) (D B,(1) BA1) (")
I(1) 0.810
B,(1) 0.657 0.183
BL(1) —0.629 —0.819 0.058
1(*) 0.497 0.764 —0.198 -0.877
B.(*) 0.051 ~0.313 0.690 0.556 -0.523

affect the (1) formulation but not the (*)
formulation. In Table 3b, the low correla-
tion between I;(*) and B,(*) with the other
I(1) or B(1)s is due to this phenomenon,
because a large proportion of the 33 trees
of Figure 1 is unresolved. However, when
trees with the same interior node number
are compared, the ordering with respect to
balance is inconsistent only among differ-
ent indices and not within each index. For
example, the I;(*) and B,(*) values for the
33 trees of Figure 1 show the same incon-
sistencies as in their original forms, Iy(1)
and B,(1) in Table 2.

On examining the relationships among
different indices, we find I and I. to be
highly correlated; B, is correlated more with
I; and I. than with B,. These relationships
are stronger for large numbers of OTUs. In
general, the indices can be placed into two
groups—(I;, I, B,) and (B,)—each measur-
ing a different aspect of balance. One major
difference between the two groups is that
the indices in the first group take the po-
sition or the size (i.e., the number of OTUs)
of the subsets into account, but the second
group (B,) measures only the graph di-
ameter of each taxonomic subset (the max-
imum distance from the root of the subset
to a subtended OTU) without allowing for
the size of each subset (see trees 3-5 of Fig.

1). This can also be seen in trees 29-32 of
Figure 1, where the indices of the first
group yield different values but B, yields
identical values (Table 1).

In Table 1, I(2) or B(2) and I(3) or B(3)
are omitted because all 33 trees have the
same OTU number and therefore the nor-
malizations would be simply proportional.
Only L and B, were calculated in the I(*)
and B(*) formulation because the other in-
dices have the following restrictions or un-
desirable properties. I has the disadvan-
tage of an irregular trend of minimum I(1)
values as the number of OTUs increases.
This in turn will affect the final normalized
index values, causing them to fluctuate. For
example, the minimum I(1) for OTU num-
berst =7, 8,and 9 are 2, 0, and 3, respec-
tively. B, is deficient because its value be-
comes very small and the range between
maximum B,(1) and minimum B,(1) shrinks
as the OTU number increases; besides, the
range of minimum B,(1) for different in-
terior node numbers will also decrease and
the value of minimum B,(1) will be fixed
at 0.6021 (=2 log 2) no matter how many
furcations the tree has, as long as the OTU
number t is greater than 35. Based on the
above considerations, our choice of indices
for most studies would be in the following
order of preference: B, I, I, and B,.
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THE CHOICE OF A BALANCE INDEX

It would not be difficult to develop other
balance or imbalance indices to quantify
tree balance. However, it is doubtful that
the problem of disagreement among dif-
ferent indices could be avoided. On the
basis of our experience we suggest the fol-
lowing.

1. Choose those indices, such as I and B,,
with fewer mathematical drawbacks and
that are less restricted to certain types
of trees.

2. Choose those indices that will assign
equal values to ambiguous trees. For ex-
ample, trees 3-5 or 15-18 (in Fig. 1) are
ambiguous with respect to tree balance;
under the circumstances, B, seems bet-
ter than I; because B, will give identical
values for each of these groups of trees,
but I; will not.

3. Choose the formulation I(*) or B(*) when
comparing trees that are not all binary.
For computational simplicity, one can
use I(3) or B(3) when the trees are all
binary but differ in OTU number, or
even I(1) or B(1) when the trees are all
binary and have the same OTU number.

4. Choose more than one index if possible.
The algorithms for computing these in-
dices should be as uncorrelated as pos-
sible, i.e., the more different aspects for
defining tree balance that are covered,
the better. The correlation matrices
among some indices in Table 3 could be
used to choose uncorrelated indices. If
the results from uncorrelated indices are
consistent, it suggests that the trees ex-
amined differ unambiguously in bal-
ance. If there are inconsistencies, con-
clusions on balance should be made
cautiously.
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APPENDIX

Algorithms for Calculating the Maximum and
Minimum Index Values of 15(1) and B,(1)
for a Tree with Given Numbers of
OTUs and Interior Nodes

L. Hand Calculation

It is not difficult to calculate balance or imbalance
indices by hand if there are few trees based on a small
number of OTUs. To calculate them by hand you may
have to explore several trees, because sometimes it
may not be obvious which is the most balanced tree
and this needs to be discovered by calculating the
index values of the various contenders.

1. Draw the most unbalanced and the most bal-
anced binary (fully bifurcating) trees with the
same number of OTUs ¢ as the tree to be eval-
uated.

2.1. If the tree to be evaluated is binary, go to step 4.

2.2. If the tree to be evaluated is multifurcating, go
to step 3.1.

3.1. Obtain the most unbalanced multifurcating tree
with the same number of interior nodes k as the
tree to be evaluated as follows. Change the re-
solved subsets of the most unbalanced binary
tree from step 1 into unresolved subsets, starting
from the smallest subset on the top (i.e., upper
level) of the tree down to the largest subsets on
the bottom (i.e., lower level) of the tree, one by
one, until the number of interior nodes is re-
duced to k (see Fig. 2a).

3.2. Obtain the most balanced multifurcating- tree
with the same number of interior nodes k as the
tree to be evaluated as follows. Change the re-
solved subsets of the most balanced binary tree
from step 1 into unresolved subsets by directly
connecting them to the root, starting from the
largest subset near the root of the tree to the
smallest subsets at the top of the tree. If the sizes
of subsets being chosen are equal, then choose
any one of them (see Fig. 2b).

4. Calculate the max I,(1) or min B,(1) values from
the most unbalanced tree and the min I(1) or
max B,(1) values from the most balanced tree
obtained via steps 1 or 3.1 and 3.2 by using the
formulas given in the text. The index values for
Ii(1) and B,(1) calculated from these two trees
will be the maximum or minimum values among
all possible trees with the same number of in-
terior nodes. Thus, the most unbalanced or bal-
anced trees obtained from the above steps will
satisfy the definition of these two indices.

I1. Computer Calculation

To evaluate any one tree, binary or multifurcating,
with £ OTUs, compute its number of interior nodes k
and index values of I4(1) and B,(1). Then,

1. The max Ii(1) or min B,(1) index values for the
most unbalanced tree with the same t and k as
the tree to be evaluated can be calculated directly
from

max L()=¢t+ X ¢t —j) j=1...,(k—1);

min B,(1) = E a/g  j=1,...,0=1).

For example, for tree c of Figure 3, max I(1)
=11+10+9+...+4=60,minB,(1)=% +
Yo+ %+ ...+ % = 25929. The index values
calculated by these formulas are identical to the
values calculated by the hand method 1.3.1 for
any given number of OTUs and number of in-
terior nodes.

2. The min Iy(1) or max B,(1) values for the most
balanced tree with the same t and k as the tree
to be evaluated can be computed by the follow-
ing formulas, in which INT and mod stand for
the integer and remainder portions of fractions,
respectively:

-1 m

min I(1) =t + X X, F(t, i); (A1)

=1 j=1

-1 m

max B(1) = ), X i, (A2)

i=1 j=1

where I = INT(log t/log 2 + 0.9999), m, = INT[(¢
+ 2i-1 — 1)/27, and

2 if t is even and can be
factorized by 2!,
ie., (t mod2-*) =0,
2 for all but the last F(t, i)
for a given i,
2-1[(t mod 2i-1) + 2i-1]
for the last F(t, i).

F(t, i) =

For multifurcating trees with k < (t — 1) in-
ternal nodes, sum only the first k — 1 terms of
Appendix Equations Al and A2.
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nodes

(b) »\V e -
Interior
5 4 3 2

1

Fic. 2. Changing resolved subsets into unresolved ones to obtain the completely unresolved tree starting
with the most unbalanced tree (a) and the most balanced tree (b) for a given number of interior nodes. Note
that the tree with two interior nodes of (b) is isomorphic with tree 32 of Figure 1.

N

(a) z=01 (b) £=11
k=8 k=10
Is1)=36 max I5(1)=77
By(1)=4.5833 min B, (1) = 2.929
(c) =1 (d) z=11
k=8 k=10
max Ig(1)=60 min Ig(1)=39
min By (1) =2.5929 max B,(1)=6.8333
(e) z=il
k=8
min Is(1)=28

max B,{1)=6.0

FiG. 3. An example to demonstrate how to draw the most unbalanced (b) and most balanced (d) binary
trees, and their most unbalanced multifurcating tree (c) and most balanced multifurcating tree (e) with the
same number of interior nodes as the tree to be evaluated (a). The numbers ¢, k, and various indices of I; and
B, for each tree are computed based on the algorithms in the text or Appendix. Resolved trees (b) and (d) are
transformed into unresolved ones (c) and (e), respectively, following the procedure shown in Figure 2.
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t=4 t=5

t=8 t=9

w K<<2'>I: t=16

FiG. 4. Examples of the most balanced binary trees for OTU numbers ¢ from 2 to 16.

In the above equations [ is the total number of
hierarchic levels (including the root) of the most bal-
anced binary tree. It is equivalent to max N, as this
symbol is employed in Text Equation 1. Figure 4 is
an example of the most balanced trees for t from 2 to
16. Perfectly balanced trees are restricted to OTU num-
bers2,4,8,16,32,...,2/(I1=1,...,0). Adding any
one additional OTU to 2! will increase the total num-
ber of levels by one, i.e., I + 1. So, for any tree with
a given number of OTUs t, between 2! + 1 and 2/,
the total number of levels should equal I. From these

" relations we obtain the expression for I given above.
Thus, for tree d in Figure 3, | = INT(log 11/log 2 +
0.9999) = INT(4.4593) = 4.

Quantity m; given above is the number of subsets
on each level i of the most balanced binary tree. For
any tree, the size of subsets on the first level always
equals 2. So, the total number of subsets m, on the

first level is always equal to INT(t/2). The formula
given above furnishes the number of subsets m;, for
any level i.

For tree d in Figure 3 as an example, m, = INT[(11
+ 2° — 1)/2'] = INT(5.5) = 5; m, = INT(3.0) = 3; m,
= INT(1.75) = 1; m, = INT(1.125) = 1. Then the se-
quence of all subsets j of the tree can be numbered
from 1 to k (=t — 1), starting from the subsets on
level 1 to the subsets on level I.

Function F(t, i) gives the size for any one subset j
on its level i for the most balanced binary tree.

As an example of applying Appendix Equations A1
and A2, we show, for tree d in Figure 3, min I(1) =
11 +2+2+2+4+2+2+4+4+3+7=239 max
BAD=Y+ Y+ Y+ Y+ %+ %+ %+ +Y=
6.833. For treee, min I(1) =11 + 2+ 2 +2 + 2 +
2+3+4=28maxB()=Y +Y+Y%+Y%+t¥%+
Y%+ % =6.0.
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