-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfland1_Ens.cpp
851 lines (803 loc) · 26.4 KB
/
fland1_Ens.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
/* fland1.f -- translated by f2c (version 20100827).
//4.15.18 revised to avoid having to link with libf2c
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
//#include "f2c.h"
#include "uebDAsrPFuebpgdecls.h"
#include<cmath>
__host__ __device__
void fland1Device(float pxv, float dt, float aesc,
float sacst[6], float sacpar[17],
float &edmnd, float &surf, float &grnd, float &tet,
float &sif, float &bfp, float &bfs, float &ssur, float &sdro, float &sperc,
float hrapx, float hrapy, int &error)
{
/* System generated locals */
int i__1;
float r__1;
double d__1, d__2; //==double d__1, d__2;
/* Local variables */
int i__;
float e1, e2, e3, e4, e5, bf, xx, xx1, del, red, sbf, tbf, tci, sfh, hpl, duz, sur, twx, bfcc, dinc, defr;
int ninc;
float pinc, spbf, perc;
float dlzp, dlzs, bfncc, adimc, check, parea, addro, adimp, fracp, percf, eused, percm, percp, lzfpc, adsur, ratio,
lzfsc, lzfsh, lzfph, lzfsm, lzfpm, uzfwc, ratlz, roimp, perct, lztwc, uzfwh, lztwh, uzfwm, uztwc, lztwm,
uzrat, ratlp, ratls, uztwh, percs, uztwm, excess, smcdry, duztwc, ratlzt, simpvt;
/*static float e1, e2, e3, e4, e5, bf, xx, xx1, del, red, sbf, tbf, tci, sfh, hpl, duz, sur, twx, bfcc, dinc, defr;
static int ninc;
static float pinc, spbf, perc;
static float dlzp, dlzs, bfncc, adimc, check, parea, addro, adimp, fracp, percf, eused, percm, percp, lzfpc, adsur, ratio,
lzfsc, lzfsh, lzfph, lzfsm, lzfpm, uzfwc, ratlz, roimp, perct, lztwc, uzfwh, lztwh, uzfwm, uztwc, lztwm,
uzrat, ratlp, ratls, uztwh, percs, uztwm, excess, smcdry, duztwc, ratlzt, simpvt;*/
/* vk 1/2008 Introduced option to generate normalized SM */
/* vk 1/2008 To select this option, change the next parameter from 0 to 1 */
/* vk 1/2008 */
/* vk Normalized soil moisture content */
/* c PARAMETER (NORMALIZE = 1) */
/* vk Not normalized soil moisture content */
/* c PARAMETER (NORMALIZE = 0) */
/* DT is in days here */
/* DTFRZ IN SEC., IDTFRZ IS # FRZ_STEPS */
/* ....................................... */
/* THIS SUBROUTINE EXECUTES THE 'SAC-SMA ' OPERATION FOR ONE TIME */
/* PERIOD. */
/* ....................................... */
/* SUBROUTINE INITIALLY WRITTEN BY. . . */
/* ERIC ANDERSON - HRL APRIL 1979 VERSION 1 */
/* ....................................... */
/* VK FROZEN GROUND CHANGES */
/* VK UZTWC,UZFWC,LZTWC,LZFSC,LZFPC ARE TOTAL WATER STORAGES */
/* VK UZTWH,UZFWH,LZTWH,LZFSH,LZFPH ARE UNFROZEN WATER STORAGES */
/* SACPAR() is array of original SAC parameters, and FRZPAR() is array */
/* of frozen ground parameters and calculated constants */
/* SACST() and FRZST() same for states */
/* delited float FGCO(6),ZSOIL(6),TSOIL(8),FGPM(11) */
/* VK---------------------------------------------------------------- */
/* VK_02 NEW COMMON STATEMENT FOR DESIRED SOIL LAYERS */
/* VK THIS VERSION HAS HARD CODED OUTPUT SOIL LAYERS */
/* VK LATER ON IT SHOULD BE CHANGED TO MAKE THEM VARIABLE */
/* INTEGER NINT/5/,NINTW/5/ */
/* k REAL DSINT(10)/0.075,0.15,0.35,0.75,1.5,0.0,0.0,0.,0.,0./ */
/* REAL DSINT(10)/0.10,0.40,0.6,0.75,1.5,0.0,0.0,0.,0.,0./ */
/* k REAL DSINTW(10)/0.075,0.15,0.35,0.75,1.5,0.0,0.0,0.,0.,0./ */
/* REAL DSINTW(10)/0.10,0.40,0.6,0.75,1.5,0.0,0.0,0.,0.,0./ */
/* SAVE DSINT,DSINTW,NINT,NINTW */
/* VK---------------------------------------------------------------- */
/* The following variables need to be added to the output */
/* variables */
/* Variable name: Name in source code: Units: */
/* --------------------------------------------------------------------- */
/* Interflow SIF mm/dt */
/* PrimaryFlow BFP mm/dt */
/* SupplementalFlow BFS mm/dt */
/* ExcessFlow SSUR mm/dt */
/* DirectFlow SDRO mm/dt */
/* Percolation SPERC mm/dt */
/* c DIMENSION EPDIST(24) */
/* COMMON BLOCKS */
/* c COMMON/FSMPM1/UZTWM,UZFWM,UZK,PCTIM,ADIMP,RIVA,ZPERC,REXP,LZTWM, */
/* c 1 LZFSM,LZFPM,LZSK,LZPK,PFREE,SIDE,SAVED,PAREA */
/* VK */
/* VK COMMON/FPMFG1/FGPM(10) */
/* -- COMMON/FPMFG1/itta,FGPM(15),ivers,ifrze */
/* VK_02 NEW COMMON BLOCK FOR INTERPOLATED SOIL TEMP AND SOIL PARAMETERS */
/* -- COMMON/TSLINT/TSINT(10),NINT,SWINT(10),SWHINT(10),NINTW */
/* -- COMMON/FRDSTFG/SMAX,PSISAT,BRT,SWLT,QUARTZ,STYPE,NUPL,NSAC, */
/* -- + RTUZ,RTLZ,DZUP,DZLOW */
/* c COMMON/FRZCNST/ FRST_FACT,CKSOIL,ZBOT */
/* -- COMMON/FRZCNST/ FRST_FACT,ZBOT */
/* VK */
/* VK NEW FG VERSION PARAMETERS & SOIL LAYER DEFINITION: */
/* VK FGPM(1) - SOIL TEXTURE CLASS */
/* VK FGPM(2) - OPTIONAL, SOIL TEMPERATURE AT THE 3M DEPTH */
/* VK FGPM(3) - OPTIONAL, POROSITY OF RESIDUE LAYER */
/* VK PAR(18) [if no calb=FGPM(4)] - RUNOFF REDUCTION PARAMETER 1 */
/* VK PAR(19) [if no calb=FGPM(5)] - RUNOFF REDUCTION PARAMETER 2 */
/* VK PAR(20) [if no calb=FGPM(6)] - RUNOFF REDUCTION PARAMETER 3 */
/* VK FGPM(6) - RUNOFF REDUCTION PARAMETER 3 (FOR ERIC'S VERSION ONLY) */
/* VK FGPM(7) - NUMBER OF SOIL LAYERS */
/* VK FGPM(8)-FGPM(15) - DEPTHS OF SOIL LAYERS (M), NEGATIVE. */
/* VK FIRST LAYER (RESIDUE) DEPTH=-0.03M */
/* -- COMMON/FSMCO1/UZTWC,UZFWC,LZTWC,LZFSC,LZFPC,ADIMC,FGCO(6),RSUM(7), */
/* -- 1 PPE,PSC,PTA,PWE,PSH,TSOIL(8) */
/* -- COMMON/FSUMS1/SROT,SIMPVT,SRODT,SROST,SINTFT,SGWFP,SGWFS,SRECHT, */
/* -- 1 SETT,SE1,SE3,SE4,SE5 */
/* ================================= RCS keyword statements ========== */
/* -- CHARACTER*68 RCSKW1,RCSKW2 */
/* -- DATA RCSKW1,RCSKW2 / ' */
/* -- .$Source: /fs/hsmb5/hydro/CVS_root/gorms/sac/fland1.f,v $ */
/* -- . $', ' */
/* -- .$Id: fland1.f,v 3.1 2012-02-02 21:32:13 zcui Exp $ */
/* -- . $' / */
/* =================================================================== */
/* VK ADDITION FOR FROZEN DEPTH ESTIMATION */
/* -- SAVE IIPREV,FRSTPREV,FRZPREV */
/* -- IF(FGCO(1) .EQ. 0.) THEN */
/* -- IIPREV=0 */
/* -- FRSTPREV=0. */
/* -- FRZPREV=0. */
/* -- ENDIF */
/* VK-------------------------------------- */
/* write(*,*) ' FRZPAR:',(frzpar(ii),ii=1,6) */
/* define major parameters from the array */
/* WRITE(*,*) 'FLAND1: SACPAR: ', (SACPAR(i), i=1, 17 ) */
/* Parameter adjustments */
//--sacpar;
//--sacst;
error = 0;
/* Function Body */
if (pxv < 0)
{
printf(" -ve precipitation at x = %f, y = %f ", hrapx, hrapy);
error = 1;
return;
}
for (i__ = 0; i__ < 6; ++i__)
{
if (sacst[i__] < -1.f)
{
printf(" -ve SAC State i= %d, %f at fland1 start\n", i__, sacst[i__]);
error = 1;
//return;
}
}
uztwm = sacpar[0];
uzfwm = sacpar[1];
adimp = sacpar[4];
lztwm = sacpar[8];
lzfsm = sacpar[9];
lzfpm = sacpar[10];
parea = 1.f - sacpar[3] - adimp;
smcdry = 0.f;
/* define states from the array */
uztwc = sacst[0];
uzfwc = sacst[1];
lztwc = sacst[2];
lzfsc = sacst[3];
lzfpc = sacst[4];
adimc = sacst[5];
/* WRITE(*,*) 'FLAND1: UZFWC= ', UZFWC */
/* VK OLD FROZEN GROUND VERSION: KEEP UNFROZEN WATER = TOTAL */
/* -- RUZICE=UZK */
/* -- RLZICE=LZSK */
/* -- RUZPERC=1.0 */
uztwh = uztwc;
uzfwh = uzfwc;
lztwh = lztwc;
lzfsh = lzfsc;
lzfph = lzfpc;
/* if(uztwc .ne. uztwh) WRITE(*,*) 'ST1=',uztwc,uztwh */
/* if(uzfwc .ne. uzfwh) WRITE(*,*) 'ST2=',uzfwc,uzfwh */
/* if(lztwc .ne. lztwh) WRITE(*,*) 'ST3=',lztwc,lztwh */
/* if(lzfsc .ne. lzfsh) WRITE(*,*) 'ST4=',lzfsc,lzfsh */
/* if(lzfpc .ne. lzfph) WRITE(*,*) 'ST5=',lzfpc,lzfph */
/* ....................................... */
/* COMPUTE EVAPOTRANSPIRATION LOSS FOR THE TIME INTERVAL. */
/* EDMND IS THE ET-DEMAND FOR THE TIME INTERVAL */
/* c EDMND=EP*EPDIST(KINT) */
/* VK ADJUST EDMND FOR EFFECT OF SNOW & FOREST COVER. */
/* from EX1 OFS subroutine */
edmnd = (1.f - (1.f - sacpar[16]) * aesc) * edmnd;
/* COMPUTE ET FROM UPPER ZONE. */
/* VK E1=EDMND*(UZTWC/UZTWM) */
/* VK ONLY UNFROZEN WATER CAN BE EVAPORATED */
e1 = edmnd * (uztwh / uztwm);
red = edmnd - e1;
/* RED IS RESIDUAL EVAP DEMAND */
/* VK UZTWC=UZTWC-E1 */
uztwh -= e1;
e2 = 0.f;
/* V.K IF(UZTWC.GE.0.) THEN */
if (uztwh >= 0.f) {
/* V.K SUBTRACT ET FROM TOTAL WATER STORAGE */
uztwc -= e1;
goto L220;
}
/* E1 CAN NOT EXCEED UZTWC */
/* V.K E1=E1+UZTWC */
/* V.K UZTWC=0.0 */
e1 += uztwh;
uztwh = 0.f;
/* V.K REDUCE TOTAL TENSION WATER BY ACTUAL E1 */
uztwc -= e1;
if (uztwc < 0.f) {
uztwc = 0.f;
}
red = edmnd - e1;
/* V.K IF(UZFWC.GE.RED) GO TO 221 */
if (uzfwh >= red) {
goto L221;
}
/* E2 IS EVAP FROM UZFWC. */
/* V.K E2=UZFWC */
/* V.K UZFWC=0.0 */
e2 = uzfwh;
uzfwh = 0.f;
/* V.K REDUCE TOTAL FREE WATER BY ACTUAL E2 */
uzfwc -= e2;
if (uzfwc < 0.f) {
uzfwc = 0.f;
}
red -= e2;
goto L225;
L221:
e2 = red;
/* VK SUBTRACT E2 FROM TOTAL & UNFROZEN FREE WATER STORAGES */
uzfwc -= e2;
uzfwh -= e2;
red = 0.f;
L220:
if (uztwc / uztwm >= uzfwc / uzfwm) {
goto L225;
}
/* UPPER ZONE FREE WATER RATIO EXCEEDS UPPER ZONE */
/* TENSION WATER RATIO, THUS TRANSFER FREE WATER TO TENSION */
uzrat = (uztwc + uzfwc) / (uztwm + uzfwm);
/* V.K ACCOUNT FOR RATIO OF UNFROZEN WATER ONLY */
/* V.K AND ADJUST FOUR SOIL STATES */
/* V.K UZTWC=UZTWM*UZRAT */
/* V.K UZFWC=UZFWM*UZRAT */
duztwc = uztwm * uzrat - uztwc;
if (duztwc > uzfwh) {
duztwc = uzfwh;
}
/* V.K TRANSFERED WATER CAN NOT EXCEED UNFROZEN FREE WATER */
uztwc += duztwc;
uztwh += duztwc;
uzfwc -= duztwc;
uzfwh -= duztwc;
/* V.K CHECK UNFROZEN WATER STORAGES TOO */
L225:
if (uztwc < 1e-5f) {
uztwc = 0.f;
uztwh = 0.f;
}
if (uzfwc < 1e-5f) {
uzfwc = 0.f;
uzfwh = 0.f;
}
/* COMPUTE ET FROM THE LOWER ZONE. */
/* COMPUTE ET FROM LZTWC (E3) */
/* V.K E3=RED*(LZTWC/(UZTWM+LZTWM)) */
/* V.K LZTWC=LZTWC-E3 */
/* V.K IF(LZTWC.GE.0.0) THEN */
/* V.K ONLY UNFROZEN WATER CAN BE EVAPORATED */
e3 = red * (lztwh / (uztwm + lztwm));
lztwh -= e3;
if (lztwh >= 0.f) {
lztwc -= e3;
goto L226;
}
/* E3 CAN NOT EXCEED LZTWC */
/* V.K E3=E3+LZTWC */
/* V.K LZTWC=0.0 */
e3 += lztwh;
lztwh = 0.f;
/* V.K REDUCE TOTAL TENSION WATER BY E3 */
lztwc -= e3;
L226:
ratlzt = lztwc / lztwm;
ratlz = (lztwc + lzfpc + lzfsc - sacpar[15]) / (lztwm + lzfpm + lzfsm - sacpar[15]);
if (ratlzt >= ratlz) {
goto L230;
}
/* RESUPPLY LOWER ZONE TENSION WATER FROM LOWER */
/* ZONE FREE WATER IF MORE WATER AVAILABLE THERE. */
del = (ratlz - ratlzt) * lztwm;
/* V.K ONLY UNFROZEN WATER CAN BE TRANSFERED */
/* if(lzfsc .ne. lzfsh) write(*,*) 'BST4=',lzfsc,lzfsh */
sfh = lzfsh + lzfph;
if (del > sfh) {
del = sfh;
}
lzfsh -= del;
if (lzfsh >= 0.f) {
/* TRANSFER FROM LZFSC TO LZTWC. */
lzfsc -= del;
/* if(lzfsc .lt. lzfsh) then */
/* write(*,*) ' lzfsc1: ',lzfsc,lzfsh,del */
/* stop */
/* endif */
}
else {
/* IF TRANSFER EXCEEDS LZFSC THEN REMAINDER COMES FROM LZFPC */
lzfpc += lzfsh;
lzfph += lzfsh;
xx = lzfsh + del;
lzfsc -= xx;
/* if(lzfsc .lt. lzfsh) then */
/* write(*,*) ' lzfsc2: ',lzfsc,lzfsh,del,xx */
/* stop */
/* endif */
lzfsh = 0.f;
}
lztwc += del;
lztwh += del;
/* V.K LZTWC=LZTWC+DEL */
/* V.K LZFSC=LZFSC-DEL */
/* V.K IF(LZFSC.GE.0.0) GO TO 230 */
/* V.K LZFPC=LZFPC+LZFSC */
/* V.K LZFSC=0.0 */
/* V.K CHECK UNFROZEN WATER STORAGE */
L230:
if (lztwc < 1e-5f) {
lztwc = 0.f;
lztwh = 0.f;
}
/* COMPUTE ET FROM ADIMP AREA.-E5 */
e5 = e1 + (red + e2) * ((adimc - e1 - uztwc) / (uztwm + lztwm));
/* ADJUST ADIMC,ADDITIONAL IMPERVIOUS AREA STORAGE, FOR EVAPORATION. */
adimc -= e5;
if (adimc >= 0.f) {
goto L231;
}
/* E5 CAN NOT EXCEED ADIMC. */
e5 += adimc;
adimc = 0.f;
L231:
e5 *= adimp;
/* E5 IS ET FROM THE AREA ADIMP. */
/* ....................................... */
/* COMPUTE PERCOLATION AND RUNOFF AMOUNTS. */
twx = pxv + uztwc - uztwm;
/* TWX IS THE TIME INTERVAL AVAILABLE MOISTURE IN EXCESS */
/* OF UZTW REQUIREMENTS. */
if (twx >= 0.f) {
goto L232;
}
/* ALL MOISTURE HELD IN UZTW--NO EXCESS. */
uztwc += pxv;
/* V.K ADJUST UNFROZEN TENSION WATER */
uztwh += pxv;
twx = 0.f;
goto L233;
/* MOISTURE AVAILABLE IN EXCESS OF UZTWC STORAGE. */
/* V.K 232 UZTWC=UZTWM */
L232:
uztwh += uztwm - uztwc;
uztwc = uztwm;
L233:
adimc = adimc + pxv - twx;
/* COMPUTE IMPERVIOUS AREA RUNOFF. */
roimp = pxv * sacpar[3];
/* ROIMP IS RUNOFF FROM THE MINIMUM IMPERVIOUS AREA. */
simpvt += roimp;
/* INITIALIZE TIME INTERVAL SUMS. */
sbf = 0.f;
ssur = 0.f;
sif = 0.f;
sperc = 0.f;
sdro = 0.f;
spbf = 0.f;
/* DETERMINE COMPUTATIONAL TIME INCREMENTS FOR THE BASIC TIME */
/* INTERVAL */
/* V.K NINC=1.0+0.2*(UZFWC+TWX) */
/* V.K PERCOLATE UNFROZEN WATER ONLY */
ninc = (uzfwh + twx) * .2f + 1.f;
/* NINC=NUMBER OF TIME INCREMENTS THAT THE TIME INTERVAL */
/* IS DIVIDED INTO FOR FURTHER */
/* SOIL-MOISTURE ACCOUNTING. NO ONE INCREMENT */
/* WILL EXCEED 5.0 MILLIMETERS OF UZFWC+PAV */
dinc = 1.f / ninc * dt;
/* DINC=LENGTH OF EACH INCREMENT IN DAYS. */
pinc = twx / ninc;
/* PINC=AMOUNT OF AVAILABLE MOISTURE FOR EACH INCREMENT. */
/* COMPUTE FREE WATER DEPLETION FRACTIONS FOR */
/* THE TIME INCREMENT BEING USED-BASIC DEPLETIONS */
/* ARE FOR ONE DAY */
/* VK INTRODUCED REDUCTION (RUZICE & RLZICE) DUE FROZEN GROUND */
/* VK HOWEVER, PRIMARY RUNOFF IS UNCHANGED */
/* VK DUZ=1.0-((1.0-UZK)**DINC) */
/* VK DLZS=1.0-((1.0-LZSK)**DINC) */
/* VK Linear transformation for frozen ground */
/* c DUZ=1.0-((1.0-UZK*RUZICE)**DINC) */
/* c DLZS=1.0-((1.0-LZSK*RLZICE)**DINC) */
/* VK Non-linear (correct) transformation for frozen ground */
d__1 = (double)(1.f - sacpar[2]);
d__2 = (double)dinc;
duz = 1.f - pow(d__1, d__2);
d__1 = (double)(1.f - sacpar[11]);
d__2 = (double)dinc;
dlzs = 1.f - pow(d__1, d__2);
d__1 = (double)(1.f - sacpar[12]);
d__2 = (double)dinc;
dlzp = 1.f - pow(d__1, d__2);
/* CVK ADJUSTMENT TO DEPLETIONS DUE TO FROZEN WATER */
/* ....................................... */
/* START INCREMENTAL DO LOOP FOR THE TIME INTERVAL. */
i__1 = ninc;
for (i__ = 0; i__ < i__1; ++i__)
{
adsur = 0.f;
/* COMPUTE DIRECT RUNOFF (FROM ADIMP AREA). */
ratio = (adimc - uztwc) / lztwm;
if (ratio < 0.f) {
ratio = 0.f;
}
/* Computing 2nd power */
r__1 = ratio;
addro = pinc * (r__1 * r__1);
/* ADDRO IS THE AMOUNT OF DIRECT RUNOFF FROM THE AREA ADIMP. */
/* COMPUTE BASEFLOW AND KEEP TRACK OF TIME INTERVAL SUM. */
/* V.K BF=LZFPC*DLZP */
/* V.K LZFPC=LZFPC-BF */
/* V.K IF (LZFPC.GT.0.0001) GO TO 234 */
/* V.K BF=BF+LZFPC */
/* V.K LZFPC=0.0 */
/* V.K BASEFLOW FROM UNFROZEN WATER ONLY */
bf = lzfph * dlzp;
lzfph -= bf;
if (lzfph > 1e-4f) {
lzfpc -= bf;
goto L234;
}
bf += lzfph;
lzfph = 0.f;
lzfpc -= bf;
if (lzfpc <= 1e-4f) {
lzfpc = 0.f;
}
/* V.K------------------------------------- */
L234:
sbf += bf;
spbf += bf;
/* V.K SUPPLAMENTAL FLOW FROM UNFROZEN WATER ONLY (NOTE, DLZS */
/* V.K NOTE, DLZS IS REDUCED DUE FROZEN GROUND */
/* V.K BF=LZFSC*DLZS */
/* V.K LZFSC=LZFSC-BF */
/* V.K IF(LZFSC.GT.0.0001) GO TO 235 */
/* V.K BF=BF+LZFSC */
/* V.K LZFSC=0.0 */
bf = lzfsh * dlzs;
lzfsh -= bf;
if (lzfsh > 1e-4f) {
/* c? IF(LZFSH.GT.0.0) THEN */
lzfsc -= bf;
/* if(abs(lzfsc-lzfsh) .gt. 0.000001) then */
/* if(abs(lzfsc-lzfsh) .gt. 0.000001) then */
/* write(*,*) ' lzfsc3: ',lzfsc,lzfsh,bf */
/* endif */
goto L235;
}
bf += lzfsh;
lzfsh = 0.f;
lzfsc -= bf;
if (lzfsc <= 1e-4f) {
lzfsc = 0.f;
}
/* V.K-------------------------------------------- */
L235:
sbf += bf;
/* COMPUTE PERCOLATION-IF NO WATER AVAILABLE THEN SKIP */
/* cvk IF((PINC+UZFWC).GT.0.01) GO TO 251 */
xx1 = pinc + uzfwh;
if (xx1 > .01f) {
goto L251;
}
uzfwc += pinc;
/* V.K ADD TO UNFROZEN WATER ALSO */
uzfwh += pinc;
goto L249;
L251:
percm = lzfpm * dlzp + lzfsm * dlzs;
/* VK PERC=PERCM*(UZFWC/UZFWM) */
/* V.K USE ONLY UNFROZEN WATER RATIOS */
/* cvk new change: PERCOLATION REDUCED BY RUZPERC */
/* C PERC=PERCM*(UZFWH/UZFWM)*RUZICE */
perc = percm * (uzfwh / uzfwm);
/* -- PERC=PERCM*(UZFWH/UZFWM)*RUZPERC */
/* V.K DEFR=1.0-((LZTWC+LZFPC+LZFSC)/(LZTWM+LZFPM+LZFSM)) */
/* vk 6/22/00 DEFR=1.0-((LZTWH+LZFPH+LZFSH)/(LZTWM+LZFPM+LZFSM)) */
/* vk better to keep original definition of DEFR using total water */
defr = 1.f - (lztwc + lzfpc + lzfsc) / (lztwm + lzfpm + lzfsm);
/* DEFR IS THE LOWER ZONE MOISTURE DEFICIENCY RATIO */
/* -- FR=1.0 */
/* FR IS THE CHANGE IN PERCOLATION WITHDRAWAL DUE TO FROZEN GROUND. */
/* -- FI=1.0 */
/* FI IS THE CHANGE IN INTERFLOW WITHDRAWAL DUE TO FROZEN GROUND. */
/* -- IF (IFRZE.EQ.0) GO TO 239 */
/* -- UZDEFR=1.0-((UZTWC+UZFWC)/(UZTWM+UZFWM)) */
/* VK */
/* VK CALL FGFR1(DEFR,FR,UZDEFR,FI) */
/* VK IF( IVERS .EQ. 1) THEN */
/* VK IF IVERS=1, OLD VERSION; IF IVERS=2, NEW VERS. FROST INDEX, */
/* VK BUT OLD VERS. OF PERCOLAT. AND INTERFLOW REDUCTION */
/* -- IF( IVERS .LE. 2) CALL FGFR1(DEFR,FR,UZDEFR,FI) */
/* -- IF(IVERS .EQ. 3 .AND. FGPM(5) .GT. 0.) THEN */
/* VK OPTIONAL VERSION TO ACCOUNT FOR ADDITIONAL IMPERVIOUS */
/* VK AREAS EFFECTS DUE FROZEN GROUND */
/* -- FR=1-SURFRZ1(FGCO(1),FGPM(6),FGPM(5)) */
/* -- FI=FR */
/* -- ENDIF */
/* -- 239 PERC=PERC*(1.0+ZPERC*(DEFR**REXP))*FR */
/* L239: */
d__1 = (double)defr;
d__2 = (double)sacpar[7];
perc *= sacpar[6] * pow(d__1, d__2) + 1.f;
/* NOTE...PERCOLATION OCCURS FROM UZFWC BEFORE PAV IS ADDED. */
/* V.K IF(PERC.LT.UZFWC) GO TO 241 */
if (perc < uzfwh) {
goto L241;
}
/* PERCOLATION RATE EXCEEDS UZFWH. */
/* V.K PERC=UZFWC */
perc = uzfwh;
/* PERCOLATION RATE IS LESS THAN UZFWH. */
L241:
uzfwc -= perc;
/* V.K ADJUST UNFROZEN STORAGE ALSO */
uzfwh -= perc;
/* CHECK TO SEE IF PERCOLATION EXCEEDS LOWER ZONE DEFICIENCY. */
check = lztwc + lzfpc + lzfsc + perc - lztwm - lzfpm - lzfsm;
if (check <= 0.f) {
goto L242;
}
perc -= check;
uzfwc += check;
/* V.K ADJUST UNFROZEN STARAGE ALSO */
uzfwh += check;
L242:
sperc += perc;
/* SPERC IS THE TIME INTERVAL SUMMATION OF PERC */
/* COMPUTE INTERFLOW AND KEEP TRACK OF TIME INTERVAL SUM. */
/* NOTE...PINC HAS NOT YET BEEN ADDED */
/* V.K DEL=UZFWC*DUZ*FI */
/* VK INTERFLOW ALSO REDUCED DUE FROFEN GROUND (DUZ REDUCED BY RUZICE) */
/* VK ADDITIONAL REDUCTION DUE IMPERVIOUS FROZEN AREAS (FI) IS OPTIONAL */
/* VK IN THE NEW VERSION. BASIC OPTION IS FI=1 */
/* -- DEL=UZFWH*DUZ*FI */
del = uzfwh * duz;
sif += del;
uzfwc -= del;
/* V.K ADJUST UNFROZEN STORAGE ALSO */
uzfwh -= del;
/* DISTRIBE PERCOLATED WATER INTO THE LOWER ZONES */
/* TENSION WATER MUST BE FILLED FIRST EXCEPT FOR THE PFREE AREA. */
/* PERCT IS PERCOLATION TO TENSION WATER AND PERCF IS PERCOLATION */
/* GOING TO FREE WATER. */
perct = perc * (1.f - sacpar[13]);
xx1 = perct + lztwc;
if (xx1 > lztwm) {
goto L243;
}
lztwc += perct;
/* V.K ADJUST UNFROZEN STORAGE ALSO */
lztwh += perct;
percf = 0.f;
goto L244;
L243:
percf = perct + lztwc - lztwm;
/* V.K CHANGE UNFROZEN WATER STORAGE */
lztwh = lztwh + lztwm - lztwc;
lztwc = lztwm;
/* DISTRIBUTE PERCOLATION IN EXCESS OF TENSION */
/* REQUIREMENTS AMONG THE FREE WATER STORAGES. */
L244:
percf += perc * sacpar[13];
if (percf == 0.f) {
goto L245;
}
hpl = lzfpm / (lzfpm + lzfsm);
/* HPL IS THE RELATIVE SIZE OF THE PRIMARY STORAGE */
/* AS COMPARED WITH TOTAL LOWER ZONE FREE WATER STORAGE. */
/* VK changed to account for ZERO MAX storage */
if (lzfpm != 0.f) {
ratlp = lzfpc / lzfpm;
}
else {
ratlp = 1.f;
}
if (lzfsm != 0.f) {
ratls = lzfsc / lzfsm;
}
else {
ratls = 1.f;
}
/* RATLP AND RATLS ARE CONTENT TO CAPACITY RATIOS, OR */
/* IN OTHER WORDS, THE RELATIVE FULLNESS OF EACH STORAGE */
fracp = hpl * 2.f * (1.f - ratlp) / (1.f - ratlp + (1.f - ratls));
/* FRACP IS THE FRACTION GOING TO PRIMARY. */
if (fracp > 1.f) {
fracp = 1.f;
}
percp = percf * fracp;
percs = percf - percp;
/* PERCP AND PERCS ARE THE AMOUNT OF THE EXCESS */
/* PERCOLATION GOING TO PRIMARY AND SUPPLEMENTAL */
/* STORGES,RESPECTIVELY. */
lzfsc += percs;
/* V.K IF(LZFSC.LE.LZFSM) GO TO 246 */
if (lzfsc <= lzfsm) {
lzfsh += percs;
goto L246;
}
percs = percs - lzfsc + lzfsm;
/* V.K ADJUST UNFROZEN STORAGE ALSO */
lzfsh += percs;
lzfsc = lzfsm;
L246:
lzfpc += percf - percs;
/* CHECK TO MAKE SURE LZFPC DOES NOT EXCEED LZFPM. */
/* V.K IF (LZFPC.LE.LZFPM) GO TO 245 */
if (lzfpc <= lzfpm) {
lzfph += percf - percs;
goto L245;
}
excess = lzfpc - lzfpm;
lztwc += excess;
/* V.K ADJUST UNFROZEN STORAGES ALSO */
lztwh += excess;
lzfph = lzfph + (percf - percs) - excess;
lzfpc = lzfpm;
/* DISTRIBUTE PINC BETWEEN UZFWC AND SURFACE RUNOFF. */
L245:
if (pinc == 0.f) {
goto L249;
}
/* CHECK IF PINC EXCEEDS UZFWM */
xx1 = pinc + uzfwc;
if (xx1 > uzfwm) {
goto L248;
}
/* NO SURFACE RUNOFF */
uzfwc += pinc;
/* V.K ADJUST UNFROZEN STORAGE ALSO */
uzfwh += pinc;
goto L249;
/* COMPUTE SURFACE RUNOFF (SUR) AND KEEP TRACK OF TIME INTERVAL SUM. */
L248:
sur = pinc + uzfwc - uzfwm;
uzfwc = uzfwm;
/* V.K ADJUST UNFROZEN STORAGE ALSO */
uzfwh = uzfwh + pinc - sur;
ssur += sur * parea;
adsur = sur * (1.f - addro / pinc);
/* ADSUR IS THE AMOUNT OF SURFACE RUNOFF WHICH COMES */
/* FROM THAT PORTION OF ADIMP WHICH IS NOT */
/* CURRENTLY GENERATING DIRECT RUNOFF. ADDRO/PINC */
/* IS THE FRACTION OF ADIMP CURRENTLY GENERATING */
/* DIRECT RUNOFF. */
ssur += adsur * adimp;
/* ADIMP AREA WATER BALANCE -- SDRO IS THE 6 HR SUM OF */
/* DIRECT RUNOFF. */
L249:
adimc = adimc + pinc - addro - adsur;
xx1 = uztwm + lztwm;
if (adimc <= xx1) {
goto L247;
}
addro = addro + adimc - xx1;
adimc = xx1;
L247:
sdro += addro * adimp;
if (adimc < 1e-5f) {
adimc = 0.f;
}
/* L240: */
}
/* ....................................... */
/* END OF INCREMENTAL DO LOOP. */
/* ....................................... */
/* COMPUTE SUMS AND ADJUST RUNOFF AMOUNTS BY THE AREA OVER */
/* WHICH THEY ARE GENERATED. */
eused = e1 + e2 + e3;
/* EUSED IS THE ET FROM PAREA WHICH IS 1.0-ADIMP-PCTIM */
sif *= parea;
/* SEPARATE CHANNEL COMPONENT OF BASEFLOW */
/* FROM THE NON-CHANNEL COMPONENT */
tbf = sbf * parea;
/* TBF IS TOTAL BASEFLOW */
bfcc = tbf * (1.f / (sacpar[14] + 1.f));
/* BFCC IS BASEFLOW, CHANNEL COMPONENT */
bfp = spbf * parea / (sacpar[14] + 1.f);
bfs = bfcc - bfp;
if (bfs < 0.f) {
bfs = 0.f;
}
bfncc = tbf - bfcc;
/* BFNCC IS BASEFLOW,NON-CHANNEL COMPONENT */
/* ADD TO MONTHLY SUMS. */
/* -- SINTFT=SINTFT+SIF */
/* -- SGWFP=SGWFP+BFP */
/* -- SGWFS=SGWFS+BFS */
/* -- SRECHT=SRECHT+BFNCC */
/* -- SROST=SROST+SSUR */
/* -- SRODT=SRODT+SDRO */
/* COMPUTE TOTAL CHANNEL INFLOW FOR THE TIME INTERVAL. */
tci = roimp + sdro + ssur + sif + bfcc;
grnd = sif + bfcc;
/* C GRND = BFCC ! interflow is part of surface flow */
/* interflow is part of ground flow */
surf = tci - grnd;
/* COMPUTE E4-ET FROM RIPARIAN VEGETATION. */
e4 = (edmnd - eused) * sacpar[5];
/* SUBTRACT E4 FROM CHANNEL INFLOW */
tci -= e4;
if (tci >= 0.f) {
goto L250;
}
e4 += tci;
tci = 0.f;
/* c 250 SROT=SROT+TCI */
L250:
grnd -= e4;
if (grnd < 0.f) {
surf += grnd;
grnd = 0.f;
if (surf < 0.f) {
surf = 0.f;
}
}
/* COMPUTE TOTAL EVAPOTRANSPIRATION-TET */
eused *= parea;
tet = eused + e5 + e4;
/* -- SETT=SETT+TET */
/* -- SE1=SE1+E1*PAREA */
/* -- SE3=SE3+E3*PAREA */
/* -- SE4=SE4+E4 */
/* -- SE5=SE5+E5 */
/* CHECK THAT ADIMC.GE.UZTWC */
if (adimc < uztwc) {
adimc = uztwc;
}
/* Return back SAC states */
sacst[0] = uztwc;
sacst[1] = uzfwc;
sacst[2] = lztwc;
sacst[3] = lzfsc;
sacst[4] = lzfpc;
sacst[5] = adimc;
/* new change: check negative states */
for (i__ = 0; i__ < 6; ++i__)
{
if (sacst[i__] < -1.f)
{
printf(" -ve SAC State i = %d, %f at fland1 end\n", i__, sacst[i__]);
error = 1;
return;
}
if (sacst[i__] < 0.f)
{
sacst[i__] = 0.f;
}
}
if (uztwh < 0.f) {
uztwh = 0.f;
}
if (uzfwh < 0.f) {
uzfwh = 0.f;
}
if (lztwh < 0.f) {
lztwh = 0.f;
}
if (lzfsh < 0.f) {
lzfsh = 0.f;
}
if (lzfph < 0.f) {
lzfph = 0.f;
}
if (sacst[0] < uztwh) {
uztwh = sacst[0];
}
if (sacst[1] < uzfwh) {
uzfwh = sacst[1];
}
if (sacst[2] < lztwh) {
lztwh = sacst[2];
}
if (sacst[3] < lzfsh) {
lzfsh = sacst[3];
}
if (sacst[4] < lzfph) {
lzfph = sacst[4];
}
return;
} /* fland1_ */