Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement collision source terms for multi-ion MHD #2213

Merged
merged 31 commits into from
Feb 21, 2025
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
23d74ec
Add collision source terms for multi-ion MHD
amrueda Dec 17, 2024
f021401
Fixed docstring issue
amrueda Dec 18, 2024
9ef9542
Use zero(eltype(u)) instead of 0
amrueda Dec 18, 2024
e611c30
Removed unexisting function from export
amrueda Dec 18, 2024
5dabad1
Fixed more docstring issues
amrueda Dec 18, 2024
5c772f6
Skip computation of collision sources of an ion species with itself
amrueda Dec 18, 2024
6104177
Added missing elixir
amrueda Dec 18, 2024
98949a4
Improved documentation
amrueda Dec 18, 2024
02aca9b
Merge branch 'main' into arr/multi_ion_collision_sources
amrueda Dec 18, 2024
0971c19
Double precision variables in initial condition
amrueda Dec 18, 2024
fde0b1d
Removed extra backtick
amrueda Dec 18, 2024
51f651e
Merge branch 'main' into arr/multi_ion_collision_sources
amrueda Dec 19, 2024
22bf32f
Use CarpenterKennedy2N54 for the collision sources' test
amrueda Dec 19, 2024
f6ad4f7
Rewrote temperature functions in elixir to increase coverage
amrueda Dec 19, 2024
1b036f4
Merge branch 'main' into arr/multi_ion_collision_sources
amrueda Dec 20, 2024
0160b44
Merge branch 'main' into arr/multi_ion_collision_sources
amrueda Jan 6, 2025
25d78c3
Apply suggestions from code review
amrueda Jan 6, 2025
3d7875b
Merge branch 'main' into arr/multi_ion_collision_sources
amrueda Feb 19, 2025
8d0552a
Removed unnecessary sqrt(v)^2
amrueda Feb 19, 2025
6bf1d48
Added DOIs and bib codes
amrueda Feb 19, 2025
7eeaf9b
Added note about mesh
amrueda Feb 19, 2025
85213cb
Merge branch 'main' into arr/multi_ion_collision_sources
amrueda Feb 20, 2025
d373da8
Apply suggestions from code review
amrueda Feb 20, 2025
3347267
Update examples/tree_2d_dgsem/elixir_mhdmultiion_collisions.jl
amrueda Feb 20, 2025
41cc9c4
Changed index of species k'->l to avoid confusion
amrueda Feb 20, 2025
00f942f
Changed variable name
amrueda Feb 20, 2025
42739b1
Update examples/tree_2d_dgsem/elixir_mhdmultiion_collisions.jl
amrueda Feb 20, 2025
cf30eda
Added missing DOI
amrueda Feb 20, 2025
2d8c769
Merge branch 'main' into arr/multi_ion_collision_sources
amrueda Feb 21, 2025
28235a6
Made example compatible with other real types
amrueda Feb 21, 2025
c8b4bf4
psi defined separately in initial condition
amrueda Feb 21, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/Trixi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -216,7 +216,8 @@ export boundary_condition_do_nothing,
BoundaryConditionCoupled

export initial_condition_convergence_test, source_terms_convergence_test,
source_terms_lorentz
source_terms_lorentz, source_terms_collision_ion_electron,
source_terms_collision_ion_electron_ohm, source_terms_collision_ion_ion
export source_terms_harmonic
export initial_condition_poisson_nonperiodic, source_terms_poisson_nonperiodic,
boundary_condition_poisson_nonperiodic
Expand Down
177 changes: 177 additions & 0 deletions src/equations/ideal_glm_mhd_multiion.jl
Original file line number Diff line number Diff line change
Expand Up @@ -175,6 +175,22 @@ divergence_cleaning_field(u, equations::AbstractIdealGlmMhdMultiIonEquations) =
return rho
end

@inline function pressure(u, equations::AbstractIdealGlmMhdMultiIonEquations)
B1, B2, B3, _ = u
p = zero(MVector{ncomponents(equations), real(equations)})
for k in eachcomponent(equations)
rho, rho_v1, rho_v2, rho_v3, rho_e = get_component(k, u, equations)
v1 = rho_v1 / rho
v2 = rho_v2 / rho
v3 = rho_v3 / rho
v_mag = sqrt(v1^2 + v2^2 + v3^2)
gamma = equations.gammas[k]
p[k] = (gamma - 1) *
(rho_e - 0.5f0 * rho * v_mag^2 - 0.5f0 * (B1^2 + B2^2 + B3^2))
end
return SVector{ncomponents(equations), real(equations)}(p)
end

#Convert conservative variables to primitive
function cons2prim(u, equations::AbstractIdealGlmMhdMultiIonEquations)
@unpack gammas = equations
Expand Down Expand Up @@ -263,4 +279,165 @@ end

return SVector(cons)
end

@doc raw"""
source_terms_collision_ion_ion(u, x, t,
equations::AbstractIdealGlmMhdMultiIonEquations)

Compute the ion-ion collision source terms for the momentum and energy equations of each ion species as
```math
\begin{aligned}
\vec{s}_{\rho_k \vec{v}_k} =& \rho_k\sum_{k'}\bar{\nu}_{kk'}(\vec{v}_{k'} - \vec{v}_k),\\
s_{E_k} =&
3 \sum_{k'} \left(
\bar{\nu}_{kk'} \frac{\rho_k M_{1}}{M_{k'} + M_k} R_1 (T_{k'} - T_k)
\right) +
\sum_{k'} \left(
\bar{\nu}_{kk'} \rho_k \frac{M_{k'}}{M_{k'} + M_k} \norm{\vec{v}_{k'} - \vec{v}_k}^2
\right)
+
\vec{v}_k \cdot \vec{s}_{\rho_k \vec{v}_k},
\end{aligned}
```
where ``M_k`` is the molar mass of ion species `k` provided in `molar_masses`,
``R_k`` is specific gas constant of ion species `k` provided in `gas_constants`, and
``\bar{\nu}_{kk'}`` is the effective collision frequency of species `k` with species `k'`, which is computed as
```math
\begin{aligned}
\bar{\nu}_{kk'} = \bar{\nu}^1_{kk'} \tilde{B}_{kk'} \frac{\rho_{k'}}{T_{k k'}^{3/2}},
\end{aligned}
```
with the so-called reduced temperature ``T_{k k'}`` and the ion-ion collision constants ``\tilde{B}_{kk'}`` provided
in `ion_electron_collision_constants`.

The additional coefficient ``\bar{\nu}^1_{kk'}`` is a non-dimensional drift correction factor proposed by Rambo and
Denavit.

References:
- P. Rambo, J. Denavit, Interpenetration and ion separation in colliding plasmas, Physics of Plasmas 1 (1994) 4050–4060.
- Schunk, R. W., Nagy, A. F. (2000). Ionospheres: Physics, plasma physics, and chemistry.
Cambridge university press.
"""
function source_terms_collision_ion_ion(u, x, t,
equations::AbstractIdealGlmMhdMultiIonEquations)
s = zero(MVector{nvariables(equations), eltype(u)})
@unpack gas_constants, molar_masses, ion_ion_collision_constants = equations

prim = cons2prim(u, equations)

for k in eachcomponent(equations)
rho_k, v1_k, v2_k, v3_k, p_k = get_component(k, prim, equations)
T_k = p_k / (rho_k * gas_constants[k])

S_q1 = 0
S_q2 = 0
S_q3 = 0
S_E = 0
for l in eachcomponent(equations)
rho_l, v1_l, v2_l, v3_l, p_l = get_component(l, prim, equations)
T_l = p_l / (rho_l * gas_constants[l])

# Reduced temperature
T_kl = (molar_masses[l] * T_k + molar_masses[k] * T_l) /
(molar_masses[k] + molar_masses[l])

delta_v2 = (v1_l - v1_k)^2 + (v2_l - v2_k)^2 + (v3_l - v3_k)^2

# Compute collision frequency without drifting correction
v_kl = ion_ion_collision_constants[k, l] * rho_l / T_kl^(3 / 2)

# Correct the collision frequency with the drifting effect
z2 = delta_v2 / (p_l / rho_l + p_k / rho_k)
v_kl /= (1 + (2 / (9 * pi))^(1 / 3) * z2)^(3 / 2)

S_q1 += rho_k * v_kl * (v1_l - v1_k)
S_q2 += rho_k * v_kl * (v2_l - v2_k)
S_q3 += rho_k * v_kl * (v3_l - v3_k)

S_E += (3 * molar_masses[1] * gas_constants[1] * (T_l - T_k)
+
molar_masses[l] * delta_v2) * v_kl * rho_k /
(molar_masses[k] + molar_masses[l])
end

S_E += (v1_k * S_q1 + v2_k * S_q2 + v3_k * S_q3)

set_component!(s, k, 0, S_q1, S_q2, S_q3, S_E, equations)
end
return SVector{nvariables(equations), real(equations)}(s)
end

@doc raw"""
source_terms_collision_ion_electron(u, x, t,
equations::AbstractIdealGlmMhdMultiIonEquations)

Compute the ion-ion collision source terms for the momentum and energy equations of each ion species. We assume v_e = v⁺
(no effect of currents on the electron velocity).

The collision sources read as
```math
\begin{aligned}
\vec{s}^{ke}_{\rho_k \vec{v}_k} =& \rho_k \bar{\nu}_{ke} (\vec{v}_{e} - \vec{v}_k),
\\
s^{ke}_{E_k} =&
3 \left(
\bar{\nu}_{ke} \frac{\rho_k M_{1}}{M_k} \underbrace{R_1}_{=1} (T_{e} - T_k)
\right)
+
\vec{v}_k \cdot \vec{s}_{\rho_k \vec{v}_k},
\end{aligned}
where ``\bar{\nu}_{kk'}`` is the collision frequency of species `k` with the electrons, which is computed as
```math
\begin{aligned}
\bar{\nu}_{ke} = \tilde{B}_{ke} \frac{e n_e}{T_e^{3/2}},
\end{aligned}
```
where ``e n_e`` is the total electron charge computed assuming quasi-neutrality, `T_e` is the electron temperature
computed with `electron_temperature` (see [`IdealGlmMhdMultiIonEquations2D`](@ref)), and ``\tilde{B}_{ke}`` is the
ion-electron collision coefficient provided in `ion_electron_collision_constants`.

References:
- P. Rambo, J. Denavit, Interpenetration and ion separation in colliding plasmas, Physics of Plasmas 1 (1994) 4050–4060.
- Schunk, R. W., Nagy, A. F. (2000). Ionospheres: Physics, plasma physics, and chemistry.
Cambridge university press.
"""
function source_terms_collision_ion_electron(u, x, t,
equations::AbstractIdealGlmMhdMultiIonEquations)
s = zero(MVector{nvariables(equations), eltype(u)})
@unpack gas_constants, molar_masses, ion_electron_collision_constants, electron_temperature = equations

prim = cons2prim(u, equations)
T_e = electron_temperature(u, equations)
T_e32 = T_e^(3 / 2)

v1_plus, v2_plus, v3_plus, vk1_plus, vk2_plus, vk3_plus = charge_averaged_velocities(u,
equations)

# Compute total electron charge
total_electron_charge = zero(real(equations))
for k in eachcomponent(equations)
rho, _ = get_component(k, u, equations)
total_electron_charge += rho * equations.charge_to_mass[k]
end

for k in eachcomponent(equations)
rho_k, v1_k, v2_k, v3_k, p_k = get_component(k, prim, equations)
T_k = p_k / (rho_k * gas_constants[k])

# Compute effective collision frequency
v_ke = ion_electron_collision_constants[k] * total_electron_charge / T_e32

S_q1 = rho_k * v_ke * (v1_plus - v1_k)
S_q2 = rho_k * v_ke * (v2_plus - v2_k)
S_q3 = rho_k * v_ke * (v3_plus - v3_k)

S_E = 3 * molar_masses[1] * gas_constants[1] * (T_e - T_k) * v_ke * rho_k /
molar_masses[k]

S_E += (v1_k * S_q1 + v2_k * S_q2 + v3_k * S_q3)

set_component!(s, k, 0, S_q1, S_q2, S_q3, S_E, equations)
end
return SVector{nvariables(equations), real(equations)}(s)
end
end
Loading
Loading