-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpypi-log-reader.py
executable file
·257 lines (201 loc) · 9.43 KB
/
pypi-log-reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/env python3
'''
TODO:
* Map-reduce the logs, but this is good enough.
'''
# 1st-party
import collections
import csv
import datetime
import logging
import lzma
import os
import re
import sys
# 3rd-party
# apt-get install python3-matplotlib
import matplotlib
# Force matplotlib to not use any Xwindows backend.
# http://stackoverflow.com/a/3054314
matplotlib.use('Agg')
import matplotlib.pyplot
import numpy
class SortedSimplePyPILogReader:
EPSILON = ''
SLASH = '/'
MIN_RANK = 1
MAX_RANK = 100
PROJECT_URL_REGEX = re.compile(r'^/packages/(.+)/(.+)/(.+)/(.+)$')
def __init__(self):
# ip_address: set(project_name)
self.ip_address_projects = {}
# ip_address: request_count
self.ip_address_requests = collections.Counter()
# project_name: request_count
self.package_requests = collections.Counter()
self.oldest_timestamp = 0
self.previous_timestamp = 0
def parse(self, sorted_simple_log_filepath):
with lzma.open(sorted_simple_log_filepath, 'rt') as sorted_simple_log_file:
sorted_simple_log_file = csv.reader(sorted_simple_log_file)
for line in sorted_simple_log_file:
unix_timestamp, ip_address, url, user_agent = line
unix_timestamp = int(unix_timestamp)
assert self.previous_timestamp <= unix_timestamp
pyversion, alphabet, project_name, package_name = \
SortedSimplePyPILogReader.PROJECT_URL_REGEX.match(url)
project_name = project_name.strip(SortedSimplePyPILogReader.SLASH)
assert SortedSimplePyPILogReader.SLASH not in project_name
self.package_requests[project_name] += 1
self.oldest_timestamp = self.oldest_timestamp or unix_timestamp
self.previous_timestamp = unix_timestamp
self.ip_address_requests[ip_address] += 1
self.ip_address_projects.setdefault(ip_address, set())\
.add(project_name)
def plot_cumulative_client_curve(self, max_rank, num_of_num_of_requests):
items = sorted(num_of_num_of_requests.items())
sum_of_num_of_requests = sum(num_of_num_of_requests.values())
cumulative_num_of_num_of_requests = 0
cumulative_percent_of_num_of_requests = []
indices = []
# compute the percentages of clients accumulated
for rank in range(max_rank):
num_of_requests, num_of_num_of_requests = items[rank]
cumulative_num_of_num_of_requests += num_of_num_of_requests
cumulative_percent = (cumulative_num_of_num_of_requests / \
sum_of_num_of_requests) * 100
indices.append(num_of_requests)
cumulative_percent_of_num_of_requests.append(cumulative_percent)
# plot
matplotlib.pyplot.plot(indices, cumulative_percent_of_num_of_requests,
'r-x')
# add title, labels, ticks, legends
matplotlib.pyplot.title('Cumulative percentage of clients who issue\n' \
'a given number HTTP requests to PyPI')
matplotlib.pyplot.ylabel('Cumulative percentage of clients (%)')
matplotlib.pyplot.xlabel('Number of HTTP requests to PyPI')
# write the actual plot
matplotlib.pyplot.savefig('cumulative-client-curve.png')
def plot_cumulative_request_curve(self, max_rank,
num_of_package_requests_by_rank,
num_of_package_requests):
cumulative_num_of_package_requests = 0
min_rank = SortedSimplePyPILogReader.MIN_RANK
cumulative_percent_of_package_requests_by_rank = []
indices = numpy.arange(min_rank, min_rank + max_rank)
# compute the percentages of requests accumulated
for rank in range(max_rank):
cumulative_num_of_package_requests += \
num_of_package_requests_by_rank[rank]
cumulative_percent_of_package_requests = \
(cumulative_num_of_package_requests / num_of_package_requests) * 100
cumulative_percent_of_package_requests_by_rank.\
append(cumulative_percent_of_package_requests)
# plot the curves
package_plot, = \
matplotlib.pyplot.plot(indices,
cumulative_percent_of_package_requests_by_rank,
'b-.')
matplotlib.pyplot.legend([package_plot],
['Package requests'],
loc='lower center')
# add title, labels, ticks, legends
matplotlib.pyplot.title('Cumulative percentage of requests\n' \
'due to popular projects on PyPI')
matplotlib.pyplot.ylabel('Cumulative percentage of requests (%)')
matplotlib.pyplot.xlabel('PyPI project rank')
matplotlib.pyplot.xlim(xmin=min_rank)
# write the actual plot
matplotlib.pyplot.savefig('cumulative-request-curve.png')
def summarize(self):
max_rank = SortedSimplePyPILogReader.MAX_RANK
assert self.oldest_timestamp <= self.previous_timestamp
oldest_datetime = \
datetime.datetime.utcfromtimestamp(self.oldest_timestamp)
newest_datetime = \
datetime.datetime.utcfromtimestamp(self.previous_timestamp)
seconds_elapsed = self.previous_timestamp - self.oldest_timestamp
# [('project_name', num_of_requests), ...]
package_requests = self.package_requests.most_common()
num_of_package_requests_by_rank = [p[1] for p in package_requests]
num_of_package_requests = sum(num_of_package_requests_by_rank)
pop_package_requests = package_requests[:max_rank]
pop_package_names = set(p[0] for p in pop_package_requests)
num_of_pop_package_requests_by_rank = [p[1] for p in pop_package_requests]
num_of_pop_package_requests = sum(num_of_pop_package_requests_by_rank)
num_of_new_requests = len(self.ip_address_requests)
num_of_requests = num_of_simple_requests + num_of_package_requests
# number of times a number of requests is seen
num_of_num_of_requests = collections.Counter()
# number of times a number of projects is seen
num_of_num_of_projects = collections.Counter()
rate_of_requests = num_of_requests / seconds_elapsed
logging.info('# of seconds from {} to {}: {:,}s'.format(oldest_datetime,
newest_datetime,
seconds_elapsed))
logging.info('# of requests: {:,}'.format(num_of_requests))
logging.info('Rate: {:.2f}/s'.format(rate_of_requests))
logging.info('')
fraction_of_new_requests = num_of_new_requests / num_of_requests
rate_of_new_requests = num_of_new_requests / seconds_elapsed
logging.info('# of new requests: {:,}'.format(num_of_new_requests))
logging.info('Fraction of all requests: {:.3f}'.\
format(fraction_of_new_requests))
logging.info('Rate: {:.2f}/s'.format(rate_of_new_requests))
logging.info('')
percent_of_package_requests = \
(num_of_package_requests / num_of_requests) * 100
rate_of_package_requests = num_of_package_requests / seconds_elapsed
logging.info('# of package requests: {:,}'.format(num_of_package_requests))
logging.info('Percentage of all requests: {:.2f}%'.\
format(percent_of_package_requests))
logging.info('Rate: {:.2f}/s'.format(rate_of_package_requests))
logging.info('')
# number of times a number of requests is seen
for ip_address, ip_address_count in self.ip_address_requests.items():
num_of_num_of_requests[ip_address_count] += 1
logging.info('[(# of requests, # of times)]: {}'.\
format(num_of_num_of_requests))
logging.info('')
num_of_users_who_request_unpopular_projects = 0
# number of times a number of projects is seen
for ip_address, project_names in self.ip_address_projects.items():
project_names_count = len(project_names)
num_of_num_of_projects[project_names_count] += 1
if len(project_names - pop_package_names) > 0:
num_of_users_who_request_unpopular_projects += 1
logging.info('[(# of projects, # of times)]: {}'.\
format(num_of_num_of_projects))
logging.info('# of users who request unpopular projects: {0}'.\
format(num_of_users_who_request_unpopular_projects))
logging.info('')
percent_of_pop_package_requests = \
(num_of_pop_package_requests / num_of_package_requests) * 100
logging.info('Top {} projects for package requests: {}'.\
format(max_rank, pop_package_requests))
logging.info('Percentage of all package requests: {:.2f}%'.\
format(percent_of_pop_package_requests))
logging.info('')
# plots
self.plot_cumulative_request_curve(max_rank,
num_of_pop_package_requests_by_rank,
num_of_package_requests)
# clear the current figure
matplotlib.pyplot.clf()
self.plot_cumulative_client_curve(max_rank, num_of_num_of_requests)
if __name__ == '__main__':
# rw for owner and group but not others
os.umask(0o07)
logging.basicConfig(filename='/var/experiments-output/pypi-log-reader.log',
level=logging.DEBUG, filemode='a',
format='[%(asctime)s UTC] [%(name)s] [%(levelname)s] '\
'[%(funcName)s:%(lineno)s@%(filename)s] '\
'%(message)s')
sorted_simple_log_filepath = \
'/var/experiments-output/simple/sorted.simple.log.xz'
try:
sorted_simple_pypi_log_reader = SortedSimplePyPILogReader()
sorted_simple_pypi_log_reader.parse(sorted_simple_log_filepath)
sorted_simple_pypi_log_reader.summarize()
except:
logging.exception('BAM!')