-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUCF_train.py
138 lines (118 loc) · 4.62 KB
/
UCF_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import sys
import argparse
from datetime import datetime
import time
# torch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
#torchvision
from torchvision import transforms
from data.UCF101_dataset.dataloader import get_dataloader
import numpy as np
from i3d import I3D,Unit3Dpy
from utils.print_time import print_time
from utils.util import AverageMeter, calculate_accuracy
def train(args):
#prepare dataset
dataloaders = get_dataloader(args)
print('------------data loaded -------------')
#model
load_model_start = time.localtime(time.time())
i3d = I3D(num_classes = 400)
if args.mode == 'rgb':
i3d.load_state_dict(torch.load('model/model_rgb.pth'))
elif args.mode == 'flow':
i3d.load_state_dict(torch.load('model/model_flow.pth'))
else:
raise ValueError('mode excepted to be [rgb|flow],but get{}'.format(mode))
i3d.conv3d_0c_1x1 = Unit3Dpy(1024, args.num_classes, kernel_size=(1, 1, 1), stride=(1, 1, 1), activation=None, use_bias=True, use_bn=False)
if bool(args.use_cuda):
i3d.cuda()
print('------------model loaded------------')
load_model_end = time.localtime(time.time())
print_time('load model',load_model_start, load_model_end)
#set optimizer
lr = args.learning_rate
optimizer = optim.SGD(i3d.parameters(), lr=lr, momentum=args.momentum, weight_decay=args.weight_decay)
lr_scheduled = lr_scheduler.MultiStepLR(optimizer, [300, 1000])
steps = 0
#train
while steps < args.max_steps:
print('Step {}/{}'.format(steps, args.max_steps))
print('*'*20)
for phase in ['train', 'valid']:
if phase == 'train':
i3d.train()
else:
print('validing...')
i3d.eval()
#losses = AverageMeter()
#accuracies = AverageMeter()
losses = 0.0
accuracies = 0.0
total = 0
for data in dataloaders[phase]:
#input
inputs, labels = data['video_x'], data['video_label']
if bool(args.use_cuda):
inputs = Variable(inputs.float()).cuda()
labels = Variable(labels.float()).cuda()
else:
inputs = Variable(inputs.float())
labels = Variable(labels.float())
#print(inputs[:,0,0,0,:])
#outputs
outputs, out_logits = i3d(inputs)
_, predicted = torch.max(out_logits, 1)
#print('predicted',predicted)#shape of (N,1)
#print('out_puts:',outputs)#shape of(N,C)
#print('labels:',labels)#shape of (N,1)
loss = F.cross_entropy(out_logits, labels.long().squeeze())
#acc = calculate_accuracy(out_logits ,labels)
# update loss and accuracy
#losses.update(loss.data[0], inputs.size(0))
#accuracies.update(acc, inputs.size(0))
losses += float(loss)
total +=labels.size(0)
accuracies += float((predicted == labels.long().squeeze()).sum())
#backward
optimizer.zero_grad()
if phase == 'train':
steps += 1
loss.backward()
optimizer.step()
lr_scheduled.step()
if steps % args.print_step == 0:
step_time = '%s'%datetime.now()
time1 = step_time.split(' ')[0]
time2 = step_time.split(' ')[1].split('.')[0]
strtime = '%s %s'%(time1, time2)
print('{} [{}] steps:{} loss:{:4f} accruacy:{:3f}'.
format(strtime, phase, steps, losses/total, accuracies/total))
if steps % 1000 == 0:
torch.save(i3d.state_dict(), 'model/ucf/model_ucf_'+str(steps))
if phase == 'valid':
print('{} [{}] loss:{:4f} accruacy{:3f}'.
format(strtime, phase, losses/total, accuracies/total))
if __name__ == '__main__':
# parse argument
parser = argparse.ArgumentParser('Train UCF101 on i3d modle')
parser.add_argument('--mode', type=str, default='rgb', help='modality')
parser.add_argument('--batch_size', type=int, default=4, help='batch_size')
parser.add_argument('--num_workers', type=int, default=4, help='num_worker')
parser.add_argument('--learning_rate',type=float, default=0.1, help='learning_rate')
parser.add_argument('--max_steps',type=int, default=8000, help='max_steps')
parser.add_argument('--num_classes',type=int, default=101, help='number of action class')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=1e-6, help='weight_decay')
parser.add_argument('--use_cuda', type=int, default=1, help='use cuda')
parser.add_argument('--list_path', type=str, default='data/UCF101_dataset/ucfTrainTestlist/new_list', help='the path to list')
parser.add_argument('--root_dir', type=str, default='data/UCF101_dataset/UCF_FRAME', help='the root directory of data')
parser.add_argument('--print_step', type=int, default=50)
args = parser.parse_args()
train(args)