-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path4DEnVar_engine.c
723 lines (529 loc) · 21.8 KB
/
4DEnVar_engine.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
#include<4DEnVar_engine.h>
#include<math.h>
double fourDEnVar_JEval( gsl_matrix * xb, gsl_matrix * hx, gsl_vector * y, gsl_matrix * R, gsl_vector * hx_bar, gsl_vector * x_eval )
/*
Return the value of the cost function (J) for the parameters in x
*/
{
double J=0.0;
float scale ;
int nens=xb->size2;
int signum;
gsl_matrix *HX_dash_b ;
gsl_matrix *X_dash_b ;
gsl_vector *xb_bar ;
gsl_vector *w = gsl_vector_calloc(xb->size2) ;
gsl_vector *residual = gsl_vector_calloc(xb->size1) ;
gsl_vector *tau = gsl_vector_calloc(xb->size1) ;
gsl_permutation *p=gsl_permutation_alloc(R->size1);
gsl_matrix *R_inv = gsl_matrix_calloc(R->size1, R->size2);
fourDEnVar_cost_function_vars cost_vars;
/*invert the R matrix*/
gsl_linalg_LU_decomp(R, p, &signum);
gsl_linalg_LU_invert(R, p, R_inv);
/*calculate the mean of each parameter
in the ensemble*/
xb_bar = mean_vector_from_matrix(xb);
/*calculate the perturbation matrix
eqn 21 in Pinnington 2020*/
scale=1./sqrt((float)nens-1.);
X_dash_b = perturbation_matrix(xb,xb_bar,scale);
/*calculate HXb matrix
eqn 26 in Pinnington 2020*/
HX_dash_b = perturbation_matrix(hx,hx_bar,scale);
/*set up structure holding everything
needed to calculate the cost function #
(other than w)*/
cost_vars.R_inv=R_inv;
cost_vars.HX_dash_b=HX_dash_b;
cost_vars.hx_bar=hx_bar;
cost_vars.y=y;
/*calculate w from x_eval
From:
x=xb+X'b*w
*/
/*calc x-xb*/
gsl_vector_sub(x_eval, xb_bar);
/*calc the LQ decomposition of X'b*/
gsl_linalg_LQ_decomp(X_dash_b, tau);
/*find w that corresponds to x
note that x_eval and X_dash_b have
been modified by the above function calls*/
gsl_linalg_LQ_lssolve(X_dash_b, tau, x_eval, w, residual);
J=fourDEnVar_cost_f(w, &cost_vars);
return(J);
}
gsl_vector * fourDEnVar( gsl_matrix * xb, gsl_matrix * hx, gsl_vector * y, gsl_matrix * R, gsl_vector * hx_bar )
/*
An implementation of 4DEnVar as described in: Pinnington, E., Quaife, T., Lawless, A., Williams, K., Arkebauer, T., and Scoby, D.: The Land Variational Ensemble Data Assimilation Framework: LAVENDAR v1.0.0, Geosci. Model Dev., 13, 55–69, https://doi.org/10.5194/gmd-13-55-2020, 2020.
arguments:
gsl_matrix * xb --- the background ensemble of initial state and/or parameters (n_dims cols; n_ens rows)
gsl_matrix * hx --- the ensemble of model predicted observations (n_obs cols; e_ens rows)
gsl_vector * y --- the observations (n_obs rows)
gsl_matrix * R --- the observation uncertainty covariance matrix (n_obs rows; n_obs cols)
gsl_vector * hx_bar --- the model predicted observations for the mean of xb (n_obs rows)
returns:
gsl_vector * xa --- the analysis vector (n_dims rows)
[Note - no actual variable called "xa" as we overwrite xb_bar for efficiency ]
*/
{
gsl_vector *xb_bar ;
//gsl_vector *hx_bar ;
gsl_matrix *X_dash_b ;
gsl_matrix *HX_dash_b ;
gsl_vector *w = gsl_vector_calloc(xb->size2) ; /*calloc ensures w=0*/
int nens=xb->size2;
int status ;
size_t iter=0;
float scale ;
fourDEnVar_cost_function_vars cost_vars;
const gsl_multimin_fdfminimizer_type *solver_type;
gsl_multimin_fdfminimizer *solver;
gsl_multimin_function_fdf cost_func;
int signum;
gsl_permutation *p=gsl_permutation_alloc(R->size1);
gsl_matrix *R_inv = gsl_matrix_calloc(R->size1, R->size2);
solver_type = gsl_multimin_fdfminimizer_vector_bfgs2;
solver = gsl_multimin_fdfminimizer_alloc (solver_type, w->size);
/*invert the R matrix*/
gsl_linalg_LU_decomp(R, p, &signum);
gsl_linalg_LU_invert(R, p, R_inv);
/*calculate the mean of each parameter
in the ensemble*/
xb_bar = mean_vector_from_matrix(xb);
/*mean of modelled observations*/
/*NOTE - now supplied separately as h(x)*/
//hx_bar = mean_vector_from_matrix(hx);
/*calculate the perturbation matrix
eqn 21 in Pinnington 2020*/
scale=1./sqrt((float)nens-1.);
X_dash_b = perturbation_matrix(xb,xb_bar,scale);
/*calculate HXb matrix
eqn 26 in Pinnington 2020
*/
HX_dash_b = perturbation_matrix(hx,hx_bar,scale);
/*n.b. as we are setting x0=xb_bar then w=0 so
we do not need to compute the initial transformation
into ensemble space as w is initialised as 0.
As a consequence, we don't need an x0 variable. Obvs.
*/
/*set up structure holding everything
needed to calculate the cost function #
(other than w)*/
cost_vars.R_inv=R_inv;
cost_vars.HX_dash_b=HX_dash_b;
cost_vars.hx_bar=hx_bar;
cost_vars.y=y;
/*set up the cost function structure*/
cost_func.n = w->size;
cost_func.f = fourDEnVar_cost_f;
cost_func.df = fourDEnVar_cost_df;
cost_func.fdf = fourDEnVar_cost_fdf;
cost_func.params = &cost_vars;
/*initialise the minimiser*/
gsl_multimin_fdfminimizer_set(solver, &cost_func, w, 0.01, 1e-10);
/*iterate the minimiser*/
do {
iter++;
status = gsl_multimin_fdfminimizer_iterate(solver);
if (status) break;
status = gsl_multimin_test_gradient(solver->gradient, 1e-16);
} while (status == GSL_CONTINUE && iter < 100);
//printf("## n_iter=%ld stat=%d (enoprog=%d)\n", iter, status, GSL_ENOPROG);
/*translate w back into observation space*/
/*n.b. writing the answer (xa) over xb_bar as we need to
add that back in anyway, so convenient given dgemv */
gsl_blas_dgemv(CblasNoTrans, 1.0,X_dash_b, solver->x, 1.0, xb_bar);
return(xb_bar);
}
gsl_vector * fourDEnVar_linear( gsl_matrix * xb, gsl_matrix * hx, gsl_vector * y, gsl_matrix * R, gsl_vector * hx_bar )
/* A wrapper to fourDEnVar_ridge_explicit_inverse() for the sake of backward compatibility.*/
{return(fourDEnVar_ridge_explicit_inverse(xb, hx, y, R, hx_bar));}
gsl_vector * fourDEnVar_ridge_explicit_inverse( gsl_matrix * xb, gsl_matrix * hx, gsl_vector * y, gsl_matrix * R, gsl_vector * hx_bar )
/*
An implementation of 4DEnVar using the ridge regression form of the cost function
This version calculates an explicit inverse, which could potentially cause problems
in some situations.
arguments:
gsl_matrix * xb --- the background ensemble of initial state and/or parameters (n_dims cols; n_ens rows)
gsl_matrix * hx --- the ensemble of model predicted observations (n_obs cols; e_ens rows)
gsl_vector * y --- the observations (n_obs rows)
gsl_matrix * R --- the observation uncertainty covariance matrix (n_obs rows; n_obs cols)
gsl_vector * hx_bar --- the model predicted observations for the mean of xb (n_obs rows)
returns:
gsl_vector * xa --- the analysis vector (n_dims rows)
[Note - no actual variable called "xa" as we overwrite xb_bar for efficiency ]
*/
{
gsl_vector *xb_bar ;
gsl_matrix *X_dash_b ;
gsl_matrix *HX_dash_b ;
gsl_matrix *tmp1 = gsl_matrix_calloc(R->size1, xb->size2);
gsl_matrix *tmp2 = gsl_matrix_calloc(xb->size2, xb->size2);
gsl_vector *tmp3 = gsl_vector_calloc(xb->size2) ;
gsl_vector *w = gsl_vector_calloc(xb->size2) ; /*calloc ensures w=0*/
int nens=xb->size2;
float scale ;
int signum;
gsl_permutation *p_r=gsl_permutation_alloc(R->size1);
gsl_permutation *p_p=gsl_permutation_alloc(xb->size2);
gsl_matrix *R_inv = gsl_matrix_calloc(R->size1, R->size2);
gsl_matrix *pseudo = gsl_matrix_calloc(xb->size2, xb->size2);
/*set tmp2 to the identity matrix*/
gsl_matrix_set_identity(tmp2);
/*invert the R matrix*/
gsl_linalg_LU_decomp(R, p_r, &signum);
gsl_linalg_LU_invert(R, p_r, R_inv);
/*calculate the mean of each parameter
in the ensemble*/
xb_bar = mean_vector_from_matrix(xb);
/*calculate y-h(xb)
n.b. ***overwrites y *** */
gsl_vector_sub(y, hx_bar);
/*calculate the perturbation matrix
eqn 21 in Pinnington 2020*/
scale=1./sqrt((float)nens-1.);
X_dash_b = perturbation_matrix(xb,xb_bar,scale);
/*calculate HXb matrix
eqn 26 in Pinnington 2020
*/
HX_dash_b = perturbation_matrix(hx,hx_bar,scale);
/*calculate R^-1*(HXb), place into tmp1 and then
calculate (HXb)^T.R^-1*(HXb)+I
NOTE: tmp2 hase been initialised to I above
and is overwritten*/
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans,1.0, R_inv, HX_dash_b, 0.0, tmp1);
gsl_blas_dgemm(CblasTrans, CblasNoTrans,1.0, HX_dash_b, tmp1, 1.0, tmp2);
/*invert the (HXb)^T.R^-1*(HXb)+I matrix*/
gsl_linalg_LU_decomp(tmp2, p_p, &signum);
gsl_linalg_LU_invert(tmp2, p_p, pseudo);
/*calculate R^-1*(y-hx_bar)
and then (HXb)^T.R^-1*(y-hx_bar)
NOTE: hx_bar gets overwritten in the
first operation (and y has already been
overwritten to contain y-hx_bar)
*/
gsl_blas_dgemv(CblasNoTrans,1.0, R_inv, y,0.0, hx_bar);
gsl_blas_dgemv(CblasTrans,1.0, HX_dash_b, hx_bar,0.0, tmp3);
/*multiply the pseudo inverse (HXb)^T.R^-1*(HXb)+I)^-1
with (HXb)^T.R^-1*(y-hx_bar) to get the weights:
*/
gsl_blas_dgemv(CblasTrans,1.0, pseudo, tmp3,0.0, w);
/*translate w back into observation space*/
/*n.b. writing the answer (xa) over xb_bar as we need to
add that back in anyway, so convenient given dgemv */
gsl_blas_dgemv(CblasNoTrans, 1.0,X_dash_b, w, 1.0, xb_bar);
return(xb_bar);
}
gsl_vector * fourDEnVar_ridge_SVD( gsl_matrix * xb, gsl_matrix * hx, gsl_vector * y, gsl_matrix * R, gsl_vector * hx_bar )
/*
An implementation of 4DEnVar using the ridge regression form of the cost function
This version uses inbuilt routines from the GSL, that use an SVD, to solve the system.
For more details, see:
https://www.gnu.org/software/gsl/doc/html/lls.html#c.gsl_multifit_linear
arguments:
gsl_matrix * xb --- the background ensemble of initial state and/or parameters (n_dims cols; n_ens rows)
gsl_matrix * hx --- the ensemble of model predicted observations (n_obs cols; e_ens rows)
gsl_vector * y --- the observations (n_obs rows)
gsl_matrix * R --- the observation uncertainty covariance matrix (n_obs rows; n_obs cols)
gsl_vector * hx_bar --- the model predicted observations for the mean of xb (n_obs rows)
returns:
gsl_vector * xa --- the analysis vector (n_dims rows)
[Note - no actual variable called "xa" as we overwrite xb_bar for efficiency ]
*/
{
gsl_vector *xb_bar ;
gsl_matrix *X_dash_b ;
gsl_matrix *HX_dash_b ;
gsl_matrix *tmp1 = gsl_matrix_calloc(R->size1, xb->size2);
gsl_matrix *tmp2 = gsl_matrix_calloc(xb->size2, xb->size2);
gsl_matrix *cov = gsl_matrix_calloc(xb->size2, xb->size2);
gsl_vector *tmp3 = gsl_vector_calloc(xb->size2) ;
gsl_multifit_linear_workspace *work = gsl_multifit_linear_alloc(xb->size2, xb->size2);
gsl_vector *w = gsl_vector_calloc(xb->size2) ; /*calloc ensures w=0*/
int nens=xb->size2;
float scale ;
double chisq;
int signum;
gsl_permutation *p_r=gsl_permutation_alloc(R->size1);
gsl_matrix *R_inv = gsl_matrix_calloc(R->size1, R->size2);
/*set tmp2 to the identity matrix*/
gsl_matrix_set_identity(tmp2);
/*invert the R matrix*/
gsl_linalg_LU_decomp(R, p_r, &signum);
gsl_linalg_LU_invert(R, p_r, R_inv);
/*calculate the mean of each parameter
in the ensemble*/
xb_bar = mean_vector_from_matrix(xb);
/*calculate y-h(xb)
n.b. ***overwrites y *** */
gsl_vector_sub(y, hx_bar);
/*calculate the perturbation matrix
eqn 21 in Pinnington 2020*/
scale=1./sqrt((float)nens-1.);
X_dash_b = perturbation_matrix(xb,xb_bar,scale);
/*calculate HXb matrix
eqn 26 in Pinnington 2020
*/
HX_dash_b = perturbation_matrix(hx,hx_bar,scale);
/*calculate R^-1*(HXb), place into tmp1 and then
calculate (HXb)^T.R^-1*(HXb)+I
NOTE: tmp2 hase been initialised to I above
and is overwritten
tmp2 is now the X in y=Xc (using the GSL symbols)
*/
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans,1.0, R_inv, HX_dash_b, 0.0, tmp1);
gsl_blas_dgemm(CblasTrans, CblasNoTrans,1.0, HX_dash_b, tmp1, 1.0, tmp2);
/*calculate the SVD
note - these are only needed for the TVSD routines,
which we aren't using here. Can be deleted.
*/
//gsl_multifit_linear_svd(tmp2, work);
/*or...*/
//gsl_multifit_linear_bsvd(tmp2, work);
/*calculate R^-1*(y-hx_bar)
and then (HXb)^T.R^-1*(y-hx_bar)
NOTE: hx_bar gets overwritten in the
first operation (and y has already been
overwritten to contain y-hx_bar)
tmp3 is now the y in y=Xc (using the GSL symbols)
*/
gsl_blas_dgemv(CblasNoTrans,1.0, R_inv, y,0.0, hx_bar);
gsl_blas_dgemv(CblasTrans,1.0, HX_dash_b, hx_bar,0.0, tmp3);
/*compute the solution*/
gsl_multifit_linear(tmp2, tmp3, w, cov, &chisq, work);
/*translate w back into observation space*/
/*n.b. writing the answer (xa) over xb_bar as we need to
add that back in anyway, so convenient given dgemv */
gsl_blas_dgemv(CblasNoTrans, 1.0,X_dash_b, w, 1.0, xb_bar);
/*free the work space*/
gsl_multifit_linear_free(work);
return(xb_bar);
}
gsl_matrix * fourDEnVar_sample_posterior( gsl_matrix * xb, gsl_matrix * hx, gsl_matrix * R, gsl_vector * hx_bar, gsl_vector *xa )
/*
Compute the posterior probability distribution for the 4DEnVar analysis.
Implements the method described in the appendix of: Pinnington, E., Amezcua, J., Cooper, E., Dadson, S., Ellis, R., Peng, J., Robinson, E., Morrison, R., Osborne, S., and Quaife, T.: Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data, Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, 2021.
Corrects some errors from that paper.
arguments:
gsl_matrix * xb --- the background ensemble of initial state and/or parameters (n_dims cols; n_ens rows)
gsl_matrix * hx --- the ensemble of model predicted observations (n_obs cols; e_ens rows)
gsl_matrix * R --- the observation uncertainty covariance matrix (n_obs rows; n_obs cols)
gsl_vector * hx_bar --- the model predicted observations for the mean of xb (n_obs rows)
gsl_vector * xa --- the analysis vector (n_dims rows) [i.e. returned from fourDEnVar()]
returns:
gsl_matrix * X_a --- the analysis ensemble of initial state and/or parameters (n_dims cols; n_ens rows)
*/
{
gsl_vector *xb_bar ;
gsl_matrix *X_dash_b ;
gsl_matrix *HX_dash_b ;
int nens=xb->size2, i=0, j=0;
float scale,tmp;
int signum_r;
gsl_permutation *p_r=gsl_permutation_alloc(R->size1);
gsl_matrix *R_inv = gsl_matrix_calloc(R->size1, R->size2);
int signum_w;
gsl_permutation *p_w=gsl_permutation_alloc(hx->size2);
gsl_matrix *Wa = gsl_matrix_calloc(hx->size2, hx->size2);
gsl_matrix *work1 = gsl_matrix_alloc(hx->size1, hx->size2);
gsl_matrix *work2 = gsl_matrix_calloc(hx->size2, hx->size2);
gsl_matrix *X_dash_a = gsl_matrix_alloc(xb->size1, xb->size2);
gsl_matrix *X_a = gsl_matrix_alloc(xb->size1, xb->size2);
/*set I*/
gsl_matrix_set_identity(work2);
/*invert the R matrix*/
gsl_linalg_LU_decomp(R, p_r, &signum_r);
gsl_linalg_LU_invert(R, p_r, R_inv);
/*calculate the mean of each parameter
in the ensemble*/
xb_bar = mean_vector_from_matrix(xb);
/*calculate the perturbation matrix
eqn 21 in Pinnington 2020
Note - that paper applies a scaling of:
scale=1./sqrt((float)nens-1.);
but that is error. Here using scale=1.
See also step (2) below.
*/
scale=1.;
X_dash_b = perturbation_matrix(xb,xb_bar,scale);
/*calculate HXb matrix
eqn 26 in Pinnington 2020*/
HX_dash_b = perturbation_matrix(hx,hx_bar,scale);
/*Wa=sqrt(I+Y'b^T*R^-1*Y'b)
See eqn A16 in Pinnington et al. 2021
Note that Y'd == HX'b due to a change
in nomenclature between the two papers
*/
/*1. work1=R^-1*HX'b*/
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, R_inv, HX_dash_b, 0.0, work1);
/*2. (HX'b)^T*work1 + I
Note: work2 = I
Note: use use of scale here differs from Pinnington et al. 2021
the equations in the appendix of that paper appear to be incorrect
*/
scale=1./((float)nens-1.);
gsl_blas_dgemm(CblasTrans, CblasNoTrans, scale, HX_dash_b, work1, 1.0, work2);
/* 3. work2 now contains I+Y'b^T*R^-1*Y'b
so need to take square root to give Wa.
Need to zero the upper left triangle as GSL
leaves the original matrix in there.
(n.b. tested the zeroing of the UL was needed
by confirming it was necessary to make A=LL^T)
*/
gsl_linalg_cholesky_decomp1(work2);
for(i=0;i<work2->size1;i++)
for(j=i+1;j<work2->size2;j++)
gsl_matrix_set(work2, i, j, 0.0);
/*3a. Invert the square root matrix*/
gsl_linalg_LU_decomp(work2, p_w, &signum_w);
gsl_linalg_LU_invert(work2, p_w, Wa);
/*4. X'a = X'b * Wa*/
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, X_dash_b, Wa, 0.0, X_dash_a);
/*Now compute Xa=X'a+xa*/
for( i=0; i<X_dash_a->size2; i++ ){
for( j=0; j<X_dash_a->size1; j++ ){
tmp=gsl_matrix_get(X_dash_a,j,i)+gsl_vector_get(xa,j);
gsl_matrix_set (X_a, j, i, tmp);
}
}
return(X_a);
}
double fourDEnVar_cost_f(const gsl_vector *w, void *p)
{
double bgrnd_term ;
double obs_term ;
double J;
const gsl_vector *hx_bar = ((fourDEnVar_cost_function_vars *) p)->hx_bar;
const gsl_vector *y = ((fourDEnVar_cost_function_vars *) p)->y;
const gsl_matrix *R_inv = ((fourDEnVar_cost_function_vars *) p)->R_inv;
const gsl_matrix *HX_dash_b = ((fourDEnVar_cost_function_vars *) p)->HX_dash_b;
gsl_vector * work1=gsl_vector_alloc(y->size) ;
gsl_vector * work2=gsl_vector_alloc(y->size) ;
/* w^Tw */
gsl_blas_ddot(w, w, &bgrnd_term);
/* hx-y */
gsl_vector_memcpy(work1,hx_bar);
gsl_blas_daxpy(-1.,y,work1);
/* Hx'b * w + (hx-y)*/
/* work1 should be hx-y*/
gsl_blas_dgemv(CblasNoTrans, 1.0, HX_dash_b, w, 1.0, work1);
/* R^-1*(HX'b*w+hx-y) */
/* work1 should now be (HX'b*w+hx-y)*/
gsl_vector_memcpy(work2,work1);
gsl_blas_dgemv(CblasTrans, 1.0, R_inv, work2, 0.0, work1);
/*full observation error term*/
/* work1 should now be R^-1*(HX'b*w+hx-y)*/
/* work2 should now be (HX'b*w+hx-y)*/
gsl_blas_ddot(work1, work2, &obs_term);
J=0.5*bgrnd_term+0.5*obs_term;
return(J);
}
void fourDEnVar_cost_df(const gsl_vector *w, void *p, gsl_vector *df)
{
const gsl_vector *hx_bar = ((fourDEnVar_cost_function_vars *) p)->hx_bar;
const gsl_vector *y = ((fourDEnVar_cost_function_vars *) p)->y;
const gsl_matrix *R_inv = ((fourDEnVar_cost_function_vars *) p)->R_inv;
const gsl_matrix *HX_dash_b = ((fourDEnVar_cost_function_vars *) p)->HX_dash_b;
gsl_vector * work1=gsl_vector_alloc(y->size) ;
gsl_vector * work2=gsl_vector_alloc(y->size) ;
/* hx-y */
gsl_vector_memcpy(work1,hx_bar);
gsl_blas_daxpy(-1.,y,work1);
/*Hx'b * w + (hx-y)*/
/* work1 should be hx-y*/
gsl_blas_dgemv(CblasNoTrans, 1.0, HX_dash_b, w, 1.0, work1);
/* R^-1*(HX'b*w+hx-y) */
/* work1 should now be (HX'b*w+hx-y)*/
gsl_vector_memcpy(work2,work1);
gsl_blas_dgemv(CblasTrans, 1.0, R_inv, work2, 0.0, work1);
/*full gradient vector for cost function*/
/* work1 should now be R^-1*(HX'b*w+hx-y)*/
/*copy w into df and add it onto the matrix-vector
product (HX'b)^T * R^-1*(HX'b*w+hx-y) */
gsl_vector_memcpy(df,w);
gsl_blas_dgemv(CblasTrans, 1.0, HX_dash_b, work1, 1.0, df);
/*df should now be:
w + (HX'b)^T*R^-1*(HX'b*w+hx-y)
so we are done...*/
return;
}
void fourDEnVar_cost_fdf (const gsl_vector *w, void *p, double *f, gsl_vector *df)
{
*f = fourDEnVar_cost_f(w, p);
fourDEnVar_cost_df(w, p, df);
return;
}
gsl_vector * mean_vector_from_matrix( gsl_matrix * gmat )
/*
Compute means across rows of a matrix and return as a GSL vector
*/
{
int x, y;
float tmp ;
gsl_vector *gvec = gsl_vector_alloc(gmat->size1);
for( y=0; y<gmat->size1; y++ ){
tmp=0.0;
for( x=0; x<gmat->size2; x++ ){
tmp+=gsl_matrix_get(gmat, y, x );
}
gsl_vector_set( gvec, y, tmp/(float)gmat->size2 );
}
return(gvec);
}
gsl_matrix * perturbation_matrix( gsl_matrix * gmat, gsl_vector * gvec, float scale )
/*
Calculate a perturbation matrix by subtract the ith element of
gvec from each element of the ith row of gmat.
gvec should be the mean of each row of gmat, for example
calculated by mean_vector_from_matrix (but that is not done
inside this function to allow some flexibility)
*/
{
int x,y;
float tmp;
gsl_matrix *pert = gsl_matrix_alloc(gmat->size1,gmat->size2);
for( x=0; x<gmat->size2; x++ ){
for( y=0; y<gmat->size1; y++ ){
tmp=gsl_matrix_get(gmat,y,x)-gsl_vector_get(gvec,y);
gsl_matrix_set (pert, y, x, tmp*scale);
}
}
return(pert);
}
void print_gsl_matrix( gsl_matrix * gmat )
/*
Print an ascii representation of the GSL matrix gmat to the stdout
*/
{
int x, y ;
double tmp;
for( y=0; y<gmat->size1; y++ ){
for( x=0; x<gmat->size2; x++ ){
tmp=gsl_matrix_get(gmat, y, x );
printf("%lf ",tmp);
}
printf("\n");
}
return;
}
void print_gsl_vector( gsl_vector * gvec )
/*
Print an ascii representation of the GSL matrix gmat to the stdout
*/
{
int y ;
double tmp;
for( y=0; y<gvec->size; y++ ){
tmp=gsl_vector_get(gvec, y);
printf("%lf\n",tmp);
}
return;
}
/*
#######################################################
#######################################################
Code below here is in development
#######################################################
#######################################################
*/