-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_engine.py
136 lines (107 loc) · 5.57 KB
/
search_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import pyximport; pyximport.install(pyimport=True)
import os
import pickle
from collections import defaultdict
from uuid import uuid4
import numpy as np
from nltk.tokenize import word_tokenize
from sklearn.metrics.pairwise import pairwise_distances
from data.template import Query, Text
from performance_metrics import (mean_precision1, mean_precision2,
norm_precision, norm_recall, precision_at)
# from sklearn.decomposition import TruncatedSVD
class SearchEngine(object):
def __init__(self,
dataset,
text_preprocessor,
vectorizer,
similarity_metric): # can be any parameter from sklearn.metrics.pairwise.pairwise_distances
self.user_id = str(uuid4())
self.dataset = dataset
self.text_preprocessor = text_preprocessor
self.vectorizer = vectorizer
self.similarity_metric = similarity_metric
self.document_vectors = None
# self.svd = TruncatedSVD(n_components=3000, n_iter=10)
self._initialize()
def _initialize(self):
documents = [self.text_preprocessor.process(document)
for document in self.dataset.documents]
self.document_vectors = self.vectorizer.vectorize_documents(documents)
# self.document_vectors = self.svd.fit_transform(self.document_vectors)
def load_user_profile(self):
if os.path.exists('user_profiles.pkl'):
with open('user_profiles.pkl', 'rb') as f:
user_profiles = pickle.load(f)
return user_profiles[self.user_id]
else:
return []
def update_user_profile(self, query):
user_profiles = defaultdict(list)
if os.path.exists('user_profiles.pkl'):
with open('user_profiles.pkl', 'rb') as f:
user_profiles = pickle.load(f)
user_profiles[self.user_id].append(query)
with open('user_profiles.pkl', 'wb') as f:
pickle.dump(user_profiles, f)
def personalize_query(self, query_vector, top_n=5):
user_profile = self.load_user_profile()
if user_profile:
profile_vectors = []
for preference in user_profile:
preference = self.text_preprocessor.process(Query(uuid4(), Text(preference, [word.lower() for word in word_tokenize(preference)])))
profile_vectors.append(self.vectorizer.vectorize_query(preference, self.text_preprocessor))
user_profile_vector = np.mean(profile_vectors, axis=0)
results_with_score = 1 - pairwise_distances(user_profile_vector,
self.document_vectors,
metric=self.similarity_metric)[0]
results_with_score = [(doc_id + 1, score)
for doc_id, score in enumerate(results_with_score)]
results_with_score = sorted(results_with_score, key=lambda x: -x[1])
results = [x[0] for x in results_with_score]
# rocchio feedback
relevant_vectors = [self.document_vectors[doc_id - 1] for doc_id in results[:top_n]]
non_relevant_vectors = [self.document_vectors[doc_id - 1] for doc_id in results[-top_n:]]
a, b, g = 1.0, 0.9, 0.1
qO = query_vector
r_av = np.mean(relevant_vectors, axis=0)
nr_av = np.mean(non_relevant_vectors, axis=0)
return (a * qO) + (b * r_av) - (g * nr_av)
return query_vector
def search(self, query, personalize=False, top_k=25):
if not isinstance(query, Query):
query = Query(uuid4(), Text(query, [word.lower() for word in word_tokenize(query)]))
query = self.text_preprocessor.process(query)
query_vector = self.vectorizer.vectorize_query(query, self.text_preprocessor)
if personalize:
# perform query personaliziation based on user_profile
query_vector = self.personalize_query(query_vector)
# query_vector = self.svd.transform(query_vector)
results_with_score = 1 - pairwise_distances(query_vector,
self.document_vectors,
metric=self.similarity_metric)[0]
results_with_score = [(doc_id + 1, score)
for doc_id, score in enumerate(results_with_score)]
results_with_score = sorted(results_with_score, key=lambda x: -x[1])
results = [x[0] for x in results_with_score]
self.update_user_profile(query.text.raw)
return [self.dataset.documents[doc_id - 1] for doc_id in results][:top_k], results
def evaluate(self):
metrics = []
for query in self.dataset.queries:
_, results = self.search(query)
relevant = self.dataset.relevant_docs[query.id]
metrics.append([
precision_at(0.25, results, relevant),
precision_at(0.5, results, relevant),
precision_at(0.75, results, relevant),
precision_at(1.0, results, relevant),
mean_precision1(results, relevant),
mean_precision2(results, relevant),
norm_recall(results, relevant),
norm_precision(results, relevant)
])
averages = [f'{np.mean([metric[i] for metric in metrics]):.4f}'
for i in range(len(metrics[0]))]
print("p_0.25: {}, p_0.5: {}, p_0.75: {}, p_1.0: {}, p_mean1: {}, p_mean2: {}, r_norm: {}, p_norm: {}".format(*averages))
return averages