forked from cbuchner1/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 742
/
cuda_helper.h
682 lines (623 loc) · 19.7 KB
/
cuda_helper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#ifndef CUDA_HELPER_H
#define CUDA_HELPER_H
#include <cuda.h>
#include <cuda_runtime.h>
#ifdef __INTELLISENSE__
/* reduce vstudio warnings (__byteperm, blockIdx...) */
#include <device_functions.h>
#include <device_launch_parameters.h>
#define __launch_bounds__(max_tpb, min_blocks)
#endif
#include <stdbool.h>
#include <stdint.h>
#ifndef UINT32_MAX
/* slackware need that */
#define UINT32_MAX UINT_MAX
#endif
#ifndef MAX_GPUS
#define MAX_GPUS 16
#endif
extern "C" short device_map[MAX_GPUS];
extern "C" long device_sm[MAX_GPUS];
extern "C" short device_mpcount[MAX_GPUS];
extern int cuda_arch[MAX_GPUS];
// common functions
extern int cuda_get_arch(int thr_id);
extern void cuda_check_cpu_init(int thr_id, uint32_t threads);
extern void cuda_check_cpu_free(int thr_id);
extern void cuda_check_cpu_setTarget(const void *ptarget);
extern uint32_t cuda_check_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_inputHash);
extern uint32_t cuda_check_hash_suppl(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_inputHash, uint8_t numNonce);
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
extern void cudaReportHardwareFailure(int thr_id, cudaError_t error, const char* func);
extern __device__ __device_builtin__ void __syncthreads(void);
extern __device__ __device_builtin__ void __threadfence(void);
#ifndef __CUDA_ARCH__
// define blockDim and threadIdx for host
extern const dim3 blockDim;
extern const uint3 threadIdx;
#endif
#ifndef SPH_C32
#define SPH_C32(x) (x)
// #define SPH_C32(x) ((uint32_t)(x ## U))
#endif
#ifndef SPH_C64
#define SPH_C64(x) (x)
// #define SPH_C64(x) ((uint64_t)(x ## ULL))
#endif
#ifndef SPH_T32
#define SPH_T32(x) (x)
// #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#endif
#ifndef SPH_T64
#define SPH_T64(x) (x)
// #define SPH_T64(x) ((x) & SPH_C64(0xFFFFFFFFFFFFFFFF))
#endif
#if __CUDA_ARCH__ < 320
// Host and Compute 3.0
#define ROTL32(x, n) SPH_T32(((x) << (n)) | ((x) >> (32 - (n))))
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#define __ldg(x) (*(x))
#else
// Compute 3.2+
#define ROTL32(x, n) __funnelshift_l( (x), (x), (n) )
#define ROTR32(x, n) __funnelshift_r( (x), (x), (n) )
#endif
#define AS_U32(addr) *((uint32_t*)(addr))
#define AS_U64(addr) *((uint64_t*)(addr))
#define AS_UINT2(addr) *((uint2*)(addr))
#define AS_UINT4(addr) *((uint4*)(addr))
#define AS_UL2(addr) *((ulonglong2*)(addr))
__device__ __forceinline__ uint64_t MAKE_ULONGLONG(uint32_t LO, uint32_t HI)
{
#if __CUDA_ARCH__ >= 130
return __double_as_longlong(__hiloint2double(HI, LO));
#else
return (uint64_t)LO | (((uint64_t)HI) << 32);
#endif
}
// das Hi Word in einem 64 Bit Typen ersetzen
__device__ __forceinline__ uint64_t REPLACE_HIDWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFFULL) | (((uint64_t)y) << 32U);
}
// das Lo Word in einem 64 Bit Typen ersetzen
__device__ __forceinline__ uint64_t REPLACE_LODWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFF00000000ULL) | ((uint64_t)y);
}
// Endian Drehung für 32 Bit Typen
#ifdef __CUDA_ARCH__
__device__ __forceinline__ uint32_t cuda_swab32(uint32_t x)
{
/* device */
return __byte_perm(x, x, 0x0123);
}
#else
/* host */
#define cuda_swab32(x) \
((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \
(((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
#endif
// das Lo Word aus einem 64 Bit Typen extrahieren
__device__ __forceinline__ uint32_t _LODWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2loint(__longlong_as_double(x));
#else
return (uint32_t)(x & 0xFFFFFFFFULL);
#endif
}
// das Hi Word aus einem 64 Bit Typen extrahieren
__device__ __forceinline__ uint32_t _HIDWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2hiint(__longlong_as_double(x));
#else
return (uint32_t)(x >> 32);
#endif
}
#ifdef __CUDA_ARCH__
__device__ __forceinline__ uint64_t cuda_swab64(uint64_t x)
{
// Input: 77665544 33221100
// Output: 00112233 44556677
uint64_t result;
//result = __byte_perm((uint32_t) x, 0, 0x0123);
//return (result << 32) + __byte_perm(_HIDWORD(x), 0, 0x0123);
asm("{ .reg .b32 x, y; // swab64\n\t"
"mov.b64 {x,y}, %1;\n\t"
"prmt.b32 x, x, 0, 0x0123;\n\t"
"prmt.b32 y, y, 0, 0x0123;\n\t"
"mov.b64 %0, {y,x};\n\t"
"}\n" : "=l"(result): "l"(x));
return result;
}
#else
/* host */
#define cuda_swab64(x) \
((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
(((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
(((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
(((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \
(((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \
(((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
(((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
(((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
#endif
// swap two uint32_t without extra registers
__device__ __host__ __forceinline__ void xchg(uint32_t &x, uint32_t &y) {
x ^= y; y = x ^ y; x ^= y;
}
// for other types...
#define XCHG(x, y) { x ^= y; y = x ^ y; x ^= y; }
/*********************************************************************/
// Macros to catch CUDA errors in CUDA runtime calls
#define CUDA_SAFE_CALL(call) \
do { \
cudaError_t err = call; \
if (cudaSuccess != err) { \
fprintf(stderr, "Cuda error in func '%s' at line %i : %s.\n", \
__FUNCTION__, __LINE__, cudaGetErrorString(err) ); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define CUDA_CALL_OR_RET(call) do { \
cudaError_t err = call; \
if (cudaSuccess != err) { \
cudaReportHardwareFailure(thr_id, err, __FUNCTION__); \
return; \
} \
} while (0)
#define CUDA_CALL_OR_RET_X(call, ret) do { \
cudaError_t err = call; \
if (cudaSuccess != err) { \
cudaReportHardwareFailure(thr_id, err, __FUNCTION__); \
return ret; \
} \
} while (0)
/*********************************************************************/
#if !defined(__CUDA_ARCH__) || defined(_WIN64)
#define USE_XOR_ASM_OPTS 0
#else
#define USE_XOR_ASM_OPTS 1
#endif
#if USE_XOR_ASM_OPTS
// device asm for whirpool
__device__ __forceinline__
uint64_t xor1(uint64_t a, uint64_t b)
{
uint64_t result;
asm("xor.b64 %0, %1, %2; // xor1" : "=l"(result) : "l"(a), "l"(b));
return result;
}
#else
#define xor1(a,b) (a ^ b)
#endif
#if USE_XOR_ASM_OPTS
// device asm for whirpool
__device__ __forceinline__
uint64_t xor3(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("xor.b64 %0, %2, %3; // xor3\n\t"
"xor.b64 %0, %0, %1;\n\t"
/* output : input registers */
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
#else
#define xor3(a,b,c) (a ^ b ^ c)
#endif
#if USE_XOR_ASM_OPTS
// device asm for whirpool
__device__ __forceinline__
uint64_t xor8(uint64_t a, uint64_t b, uint64_t c, uint64_t d,uint64_t e,uint64_t f,uint64_t g, uint64_t h)
{
uint64_t result;
asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(g) ,"l"(h));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(f));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(e));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(d));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(c));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(b));
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(a));
return result;
}
#else
#define xor8(a,b,c,d,e,f,g,h) ((a^b)^(c^d)^(e^f)^(g^h))
#endif
// device asm for x17
__device__ __forceinline__
uint64_t xandx(uint64_t a, uint64_t b, uint64_t c)
{
#ifdef __CUDA_ARCH__
uint64_t result;
asm("{ // xandx \n\t"
".reg .u64 n;\n\t"
"xor.b64 %0, %2, %3;\n\t"
"and.b64 n, %0, %1;\n\t"
"xor.b64 %0, n, %3;\n\t"
"}\n" : "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
#else
return ((b^c) & a) ^ c;
#endif
}
// device asm for x17
__device__ __forceinline__
uint64_t andor(uint64_t a, uint64_t b, uint64_t c)
{
#ifdef __CUDA_ARCH__
uint64_t result;
asm("{ // andor\n\t"
".reg .u64 m,n;\n\t"
"and.b64 m, %1, %2;\n\t"
" or.b64 n, %1, %2;\n\t"
"and.b64 %0, n, %3;\n\t"
" or.b64 %0, %0, m;\n\t"
"}\n" : "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
#else
return ((a | b) & c) | (a & b);
#endif
}
// device asm for x17
__device__ __forceinline__
uint64_t shr_t64(uint64_t x, uint32_t n)
{
#ifdef __CUDA_ARCH__
uint64_t result;
asm("shr.b64 %0,%1,%2;\n\t"
: "=l"(result) : "l"(x), "r"(n));
return result;
#else
return x >> n;
#endif
}
__device__ __forceinline__
uint64_t shl_t64(uint64_t x, uint32_t n)
{
#ifdef __CUDA_ARCH__
uint64_t result;
asm("shl.b64 %0,%1,%2;\n\t"
: "=l"(result) : "l"(x), "r"(n));
return result;
#else
return x << n;
#endif
}
__device__ __forceinline__
uint32_t shr_t32(uint32_t x,uint32_t n) {
#ifdef __CUDA_ARCH__
uint32_t result;
asm("shr.b32 %0,%1,%2;" : "=r"(result) : "r"(x), "r"(n));
return result;
#else
return x >> n;
#endif
}
__device__ __forceinline__
uint32_t shl_t32(uint32_t x,uint32_t n) {
#ifdef __CUDA_ARCH__
uint32_t result;
asm("shl.b32 %0,%1,%2;" : "=r"(result) : "r"(x), "r"(n));
return result;
#else
return x << n;
#endif
}
#ifndef USE_ROT_ASM_OPT
#define USE_ROT_ASM_OPT 1
#endif
// 64-bit ROTATE RIGHT
#if __CUDA_ARCH__ >= 320 && USE_ROT_ASM_OPT == 1
/* complicated sm >= 3.5 one (with Funnel Shifter beschleunigt), to bench */
__device__ __forceinline__
uint64_t ROTR64(const uint64_t value, const int offset) {
uint2 result;
if(offset < 32) {
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
} else {
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
}
return __double_as_longlong(__hiloint2double(result.y, result.x));
}
#elif __CUDA_ARCH__ >= 120 && USE_ROT_ASM_OPT == 2
__device__ __forceinline__
uint64_t ROTR64(const uint64_t x, const int offset)
{
uint64_t result;
asm("{ // ROTR64 \n\t"
".reg .b64 lhs;\n\t"
".reg .u32 roff;\n\t"
"shr.b64 lhs, %1, %2;\n\t"
"sub.u32 roff, 64, %2;\n\t"
"shl.b64 %0, %1, roff;\n\t"
"add.u64 %0, %0, lhs;\n\t"
"}\n" : "=l"(result) : "l"(x), "r"(offset));
return result;
}
#else
/* host */
#define ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#endif
// 64-bit ROTATE LEFT
#if __CUDA_ARCH__ >= 320 && USE_ROT_ASM_OPT == 1
__device__ __forceinline__
uint64_t ROTL64(const uint64_t value, const int offset) {
uint2 result;
if(offset >= 32) {
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
} else {
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
}
return __double_as_longlong(__hiloint2double(result.y, result.x));
}
#elif __CUDA_ARCH__ >= 120 && USE_ROT_ASM_OPT == 2
__device__ __forceinline__
uint64_t ROTL64(const uint64_t x, const int offset)
{
uint64_t result;
asm("{ // ROTL64 \n\t"
".reg .b64 lhs;\n\t"
".reg .u32 roff;\n\t"
"shl.b64 lhs, %1, %2;\n\t"
"sub.u32 roff, 64, %2;\n\t"
"shr.b64 %0, %1, roff;\n\t"
"add.u64 %0, lhs, %0;\n\t"
"}\n" : "=l"(result) : "l"(x), "r"(offset));
return result;
}
#elif __CUDA_ARCH__ >= 320 && USE_ROT_ASM_OPT == 3
__device__
uint64_t ROTL64(const uint64_t x, const int offset)
{
uint64_t res;
asm("{ // ROTL64 \n\t"
".reg .u32 tl,th,vl,vh;\n\t"
".reg .pred p;\n\t"
"mov.b64 {tl,th}, %1;\n\t"
"shf.l.wrap.b32 vl, tl, th, %2;\n\t"
"shf.l.wrap.b32 vh, th, tl, %2;\n\t"
"setp.lt.u32 p, %2, 32;\n\t"
"@!p mov.b64 %0, {vl,vh};\n\t"
"@p mov.b64 %0, {vh,vl};\n\t"
"}\n" : "=l"(res) : "l"(x) , "r"(offset)
);
return res;
}
#else
/* host */
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#endif
__device__ __forceinline__
uint64_t SWAPDWORDS(uint64_t value)
{
#if __CUDA_ARCH__ >= 320
uint2 temp;
asm("mov.b64 {%0, %1}, %2; ": "=r"(temp.x), "=r"(temp.y) : "l"(value));
asm("mov.b64 %0, {%1, %2}; ": "=l"(value) : "r"(temp.y), "r"(temp.x));
return value;
#else
return ROTL64(value, 32);
#endif
}
/* lyra2/bmw - uint2 vector's operators */
__device__ __forceinline__
void LOHI(uint32_t &lo, uint32_t &hi, uint64_t x) {
#ifdef __CUDA_ARCH__
asm("mov.b64 {%0,%1},%2; \n\t"
: "=r"(lo), "=r"(hi) : "l"(x));
#else
lo = (uint32_t)(x);
hi = (uint32_t)(x >> 32);
#endif
}
static __host__ __device__ __forceinline__ uint2 vectorize(uint64_t v) {
uint2 result;
#ifdef __CUDA_ARCH__
asm("mov.b64 {%0,%1},%2; \n\t"
: "=r"(result.x), "=r"(result.y) : "l"(v));
#else
result.x = (uint32_t)(v);
result.y = (uint32_t)(v >> 32);
#endif
return result;
}
static __host__ __device__ __forceinline__ uint64_t devectorize(uint2 v) {
#ifdef __CUDA_ARCH__
return MAKE_ULONGLONG(v.x, v.y);
#else
return (((uint64_t)v.y) << 32) + v.x;
#endif
}
/**
* uint2 direct ops by c++ operator definitions
*/
static __device__ __forceinline__ uint2 operator^ (uint2 a, uint2 b) { return make_uint2(a.x ^ b.x, a.y ^ b.y); }
static __device__ __forceinline__ uint2 operator& (uint2 a, uint2 b) { return make_uint2(a.x & b.x, a.y & b.y); }
static __device__ __forceinline__ uint2 operator| (uint2 a, uint2 b) { return make_uint2(a.x | b.x, a.y | b.y); }
static __device__ __forceinline__ uint2 operator~ (uint2 a) { return make_uint2(~a.x, ~a.y); }
static __device__ __forceinline__ void operator^= (uint2 &a, uint2 b) { a = a ^ b; }
static __device__ __forceinline__ uint2 operator+ (uint2 a, uint2 b) {
return vectorize(devectorize(a) + devectorize(b));
}
static __device__ __forceinline__ void operator+= (uint2 &a, uint2 b) { a = a + b; }
static __device__ __forceinline__ uint2 operator- (uint2 a, uint2 b) {
return vectorize(devectorize(a) - devectorize(b));
}
static __device__ __forceinline__ void operator-= (uint2 &a, uint2 b) { a = a - b; }
/**
* basic multiplication between 64bit no carry outside that range (ie mul.lo.b64(a*b))
* (what does uint64 "*" operator)
*/
static __device__ __forceinline__ uint2 operator* (uint2 a, uint2 b)
{
#ifdef __CUDA_ARCH__
uint2 result;
asm("{ // uint2 a*b \n\t"
"mul.lo.u32 %0, %2, %4; \n\t"
"mul.hi.u32 %1, %2, %4; \n\t"
"mad.lo.cc.u32 %1, %3, %4, %1; \n\t"
"madc.lo.u32 %1, %3, %5, %1; \n\t"
"}\n" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b.x), "r"(b.y));
return result;
#else
// incorrect but unused host equiv
return make_uint2(a.x * b.x, a.y * b.y);
#endif
}
// uint2 ROR/ROL methods
__device__ __forceinline__
uint2 ROR2(const uint2 a, const int offset)
{
uint2 result;
#if __CUDA_ARCH__ > 300
if (offset < 32) {
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset));
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset));
} else /* if (offset < 64) */ {
/* offset SHOULD BE < 64 ! */
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset));
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset));
}
#else
if (!offset)
result = a;
else if (offset < 32) {
result.y = ((a.y >> offset) | (a.x << (32 - offset)));
result.x = ((a.x >> offset) | (a.y << (32 - offset)));
} else if (offset == 32) {
result.y = a.x;
result.x = a.y;
} else {
result.y = ((a.x >> (offset - 32)) | (a.y << (64 - offset)));
result.x = ((a.y >> (offset - 32)) | (a.x << (64 - offset)));
}
#endif
return result;
}
__device__ __forceinline__
uint2 ROL2(const uint2 a, const int offset)
{
uint2 result;
#if __CUDA_ARCH__ > 300
if (offset >= 32) {
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset));
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset));
}
else {
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset));
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset));
}
#else
if (!offset)
result = a;
else
result = ROR2(a, 64 - offset);
#endif
return result;
}
__device__ __forceinline__
uint2 SWAPUINT2(uint2 value)
{
return make_uint2(value.y, value.x);
}
/* Byte aligned Rotations (lyra2) */
#ifdef __CUDA_ARCH__
__device__ __inline__ uint2 ROL8(const uint2 a)
{
uint2 result;
result.x = __byte_perm(a.y, a.x, 0x6543);
result.y = __byte_perm(a.y, a.x, 0x2107);
return result;
}
__device__ __inline__ uint2 ROR16(const uint2 a)
{
uint2 result;
result.x = __byte_perm(a.y, a.x, 0x1076);
result.y = __byte_perm(a.y, a.x, 0x5432);
return result;
}
__device__ __inline__ uint2 ROR24(const uint2 a)
{
uint2 result;
result.x = __byte_perm(a.y, a.x, 0x2107);
result.y = __byte_perm(a.y, a.x, 0x6543);
return result;
}
#else
#define ROL8(u) ROL2(u, 8)
#define ROR16(u) ROR2(u,16)
#define ROR24(u) ROR2(u,24)
#endif
/* uint2 for bmw512 - to double check later */
__device__ __forceinline__
static uint2 SHL2(uint2 a, int offset)
{
#if __CUDA_ARCH__ > 300
uint2 result;
if (offset < 32) {
asm("{ // SHL2 (l) \n\t"
"shf.l.clamp.b32 %1, %2, %3, %4; \n\t"
"shl.b32 %0, %2, %4; \n\t"
"}\n" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset));
} else {
asm("{ // SHL2 (h) \n\t"
"shf.l.clamp.b32 %1, %2, %3, %4; \n\t"
"shl.b32 %0, %2, %4; \n\t"
"}\n" : "=r"(result.x), "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset));
}
return result;
#else
if (offset <= 32) {
a.y = (a.y << offset) | (a.x >> (32 - offset));
a.x = (a.x << offset);
} else {
a.y = (a.x << (offset-32));
a.x = 0;
}
return a;
#endif
}
__device__ __forceinline__
static uint2 SHR2(uint2 a, int offset)
{
#if __CUDA_ARCH__ > 300
uint2 result;
if (offset<32) {
asm("{\n\t"
"shf.r.clamp.b32 %0,%2,%3,%4; \n\t"
"shr.b32 %1,%3,%4; \n\t"
"}\n\t"
: "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset));
} else {
asm("{\n\t"
"shf.l.clamp.b32 %0,%2,%3,%4; \n\t"
"shl.b32 %1,%3,%4; \n\t"
"}\n\t"
: "=r"(result.x), "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset));
}
return result;
#else
if (offset <= 32) {
a.x = (a.x >> offset) | (a.y << (32 - offset));
a.y = (a.y >> offset);
} else {
a.x = (a.y >> (offset - 32));
a.y = 0;
}
return a;
#endif
}
// CUDA 9+ deprecated functions warnings (new mask param)
#if CUDA_VERSION >= 9000 && __CUDA_ARCH__ >= 300
#undef __shfl
#define __shfl(var, srcLane, width) __shfl_sync(0xFFFFFFFFu, var, srcLane, width)
#undef __shfl_up
#define __shfl_up(var, delta, width) __shfl_up_sync(0xFFFFFFFF, var, delta, width)
#undef __any
#define __any(p) __any_sync(0xFFFFFFFFu, p)
#endif
#endif // #ifndef CUDA_HELPER_H