#Klein prototext name: "TVG_CRF_RNN_COCO_VOC_TRAIN_3_CLASSES" layer { name: "data_rgb" type: "Data" top: "data" data_param { source: "/home/hesam/Prog_Python_linux/Medical_tests/converted/train_images_lmdb" backend: LMDB batch_size: 1 } include: { phase: TRAIN } } layer { name: "data_label" type: "Data" top: "label" data_param { source: "/home/hesam/Prog_Python_linux/Medical_tests/converted/train_labels_lmdb" backend: LMDB batch_size: 1 } include: { phase: TRAIN } } layer { name: "data_rgb" type: "Data" top: "data" data_param { source: "/home/hesam/Prog_Python_linux/Medical_tests/converted/test_images_lmdb" backend: LMDB batch_size: 1 } include: { phase: TEST } } layer { name: "data_label" type: "Data" top: "label" data_param { source: "/home/hesam/Prog_Python_linux/Medical_tests/converted/test_labels_lmdb" backend: LMDB batch_size: 1 } include: { phase: TEST } } layer { name: "conv1_1" type: "Convolution" bottom: "data" top: "conv1_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 pad: 100 kernel_size: 3 engine: CAFFE } } layer { name: "relu1_1" type: "ReLU" bottom: "conv1_1" top: "conv1_1" } layer { name: "conv1_2" type: "Convolution" bottom: "conv1_1" top: "conv1_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu1_2" type: "ReLU" bottom: "conv1_2" top: "conv1_2" } layer { name: "pool1" type: "Pooling" bottom: "conv1_2" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1" top: "conv2_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu2_1" type: "ReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu2_2" type: "ReLU" bottom: "conv2_2" top: "conv2_2" } layer { name: "pool2" type: "Pooling" bottom: "conv2_2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu3_1" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu3_2" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu3_3" type: "ReLU" bottom: "conv3_3" top: "conv3_3" } layer { name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu4_1" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu4_2" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu4_3" type: "ReLU" bottom: "conv4_3" top: "conv4_3" } layer { name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu5_1" type: "ReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu5_2" type: "ReLU" bottom: "conv5_2" top: "conv5_2" } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 engine: CAFFE } } layer { name: "relu5_3" type: "ReLU" bottom: "conv5_3" top: "conv5_3" } layer { name: "pool5" type: "Pooling" bottom: "conv5_3" top: "pool5" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "fc6" type: "Convolution" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 4096 kernel_size: 7 engine: CAFFE } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc7" type: "Convolution" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 4096 kernel_size: 1 engine: CAFFE } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } } layer { name: "score-fr-new" type: "Convolution" bottom: "fc7" top: "score" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 2 #21 kernel_size: 1 engine: CAFFE weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "score2-new" type: "Deconvolution" bottom: "score" top: "score2-new" param { lr_mult: 1 } convolution_param { num_output: 2 #21 kernel_size: 4 stride: 2 weight_filler: { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "score-pool4-new" type: "Convolution" bottom: "pool4" top: "score-pool4-new" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 2 #21 kernel_size: 1 engine: CAFFE weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { type: 'Crop' name: 'crop' bottom: 'score-pool4-new' bottom: 'score2-new' top: 'score-pool4c' } layer { name: "fuse" type: "Eltwise" bottom: "score2-new" bottom: "score-pool4c" top: "score-fused" eltwise_param { operation: SUM } } layer { name: "score4-new" type: "Deconvolution" bottom: "score-fused" top: "score4-new" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 2 #21 bias_term: false kernel_size: 4 stride: 2 weight_filler: { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "score-pool3-new" type: "Convolution" bottom: "pool3" top: "score-pool3-new" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 2 #21 kernel_size: 1 engine: CAFFE weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { type: 'Crop' name: 'crop' bottom: 'score-pool3-new' bottom: 'score4-new' top: 'score-pool3c' } layer { name: "fuse" type: "Eltwise" bottom: "score4-new" bottom: "score-pool3c" top: "score-final" eltwise_param { operation: SUM } } layer { name: "upsample-new" type: "Deconvolution" bottom: "score-final" top: "bigscore" param { lr_mult: 0 } convolution_param { num_output: 2 #21 bias_term: false kernel_size: 16 stride: 8 weight_filler: { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { type: 'Crop' name: 'crop' bottom: 'bigscore' bottom: 'data' top: 'coarse' } layer { type: 'Split' name: 'splitting' bottom: 'coarse' top: 'unary' top: 'Q0' } layer { name: "inference1-new"#if you set name "inference1", code will load parameters from caffemodel. type: "MultiStageMeanfield" bottom: "unary" bottom: "Q0" bottom: "data" top: "pred" param { lr_mult: 10000#learning rate for W_G } param { lr_mult: 10000#learning rate for W_B } param { lr_mult: 1000 #learning rate for compatiblity transform matrix } multi_stage_meanfield_param { #spatial_filter_weights_str: "3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3" #bilateral_filter_weights_str: "5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5" num_iterations: 10 compatibility_mode: POTTS threshold: 2 theta_alpha: 160 theta_beta: 3 theta_gamma: 3 } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "pred" bottom: "label" top: "loss" loss_param { ignore_label: 255 normalize: false } include: { phase: TRAIN } }