-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun.py
117 lines (98 loc) · 3.44 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
import random
import sys
from pathlib import Path
import torch
current_dir = Path(__file__).resolve().parent
sys.path.append(str(Path.joinpath(current_dir, "../")))
import torch.nn as nn
import torch.optim as optim
from stresnet import Trainer
from stresnet.dataset.makedataset import get_dataset
from stresnet.models import STResNet
from stresnet.utils import Cfg
from torch.utils.data import DataLoader
def make_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"config_file", type=str, metavar="FILE", help="path to config file"
)
parser.add_argument(
"-s", "--seed", default=0, type=int, help="seed for initializing training"
)
return parser.parse_args()
def set_seed(seed: int = 42) -> None:
random.seed(seed)
torch.manual_seed(seed)
def main():
args = make_parser()
args.device = "cuda" if torch.cuda.is_available() else "cpu"
config_file = args.config_file
config_file_dir = str(Path(config_file).resolve().parent)
config = Cfg(config_file)
dataset_params = config.get_params(type="dataset")
model_params = config.get_params(type="model")
learning_params = config.get_params(type="learning")
train_dataset, valid_dataset, scaler, external_dim = get_dataset(
data_files=dataset_params["data_files"],
holiday_file=dataset_params["holiday_file"],
meteorol_file=dataset_params["meteorol_file"],
T=dataset_params["T"],
len_closeness=dataset_params["len_closeness"],
len_period=dataset_params["len_period"],
len_trend=dataset_params["len_trend"],
period_interval=dataset_params["period_interval"],
trend_interval=dataset_params["trend_interval"],
len_test=dataset_params["len_test"],
use_meta=dataset_params["use_meta"],
map_height=model_params["map_height"],
map_width=model_params["map_width"],
)
train_dataloader = DataLoader(
train_dataset,
batch_size=learning_params["batch_size"],
shuffle=False,
drop_last=False,
)
valid_dataloader = DataLoader(
valid_dataset,
batch_size=dataset_params["len_test"],
shuffle=False,
drop_last=False,
)
st_resnet = STResNet(
len_closeness=dataset_params["len_closeness"],
len_period=dataset_params["len_period"],
len_trend=dataset_params["len_trend"],
external_dim=external_dim,
nb_flow=model_params["nb_flow"],
map_height=model_params["map_height"],
map_width=model_params["map_width"],
nb_residual_unit=model_params["nb_residual_unit"],
)
st_resnet.to(args.device)
criterion = nn.MSELoss()
optimizer = optim.Adam(st_resnet.parameters(), lr=learning_params["learning_rate"])
trainer = Trainer(
epochs=learning_params["epochs"],
train_loader=train_dataloader,
valid_loader=valid_dataloader,
criterion=criterion,
optimizer=optimizer,
scaler=scaler,
device=args.device,
save_dir=config_file_dir,
)
print(
"SEED: {}, DEVICE: {}, nb_resunit: {}, closeness: {}, period: {}, trend: {}".format(
args.seed,
args.device,
model_params["nb_residual_unit"],
dataset_params["len_closeness"],
dataset_params["len_period"],
dataset_params["len_trend"],
)
)
trainer.fit(st_resnet)
if __name__ == "__main__":
main()