-
Notifications
You must be signed in to change notification settings - Fork 205
/
Copy pathvisualize_episodes.py
147 lines (124 loc) · 4.95 KB
/
visualize_episodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import numpy as np
import cv2
import h5py
import argparse
import matplotlib.pyplot as plt
from constants import DT
import IPython
e = IPython.embed
JOINT_NAMES = ["waist", "shoulder", "elbow", "forearm_roll", "wrist_angle", "wrist_rotate"]
STATE_NAMES = JOINT_NAMES + ["gripper"]
def load_hdf5(dataset_dir, dataset_name):
dataset_path = os.path.join(dataset_dir, dataset_name + '.hdf5')
if not os.path.isfile(dataset_path):
print(f'Dataset does not exist at \n{dataset_path}\n')
exit()
with h5py.File(dataset_path, 'r') as root:
is_sim = root.attrs['sim']
qpos = root['/observations/qpos'][()]
qvel = root['/observations/qvel'][()]
action = root['/action'][()]
image_dict = dict()
for cam_name in root[f'/observations/images/'].keys():
image_dict[cam_name] = root[f'/observations/images/{cam_name}'][()]
return qpos, qvel, action, image_dict
def main(args):
dataset_dir = args['dataset_dir']
episode_idx = args['episode_idx']
dataset_name = f'episode_{episode_idx}'
qpos, qvel, action, image_dict = load_hdf5(dataset_dir, dataset_name)
save_videos(image_dict, DT, video_path=os.path.join(dataset_dir, dataset_name + '_video.mp4'))
visualize_joints(qpos, action, plot_path=os.path.join(dataset_dir, dataset_name + '_qpos.png'))
# visualize_timestamp(t_list, dataset_path) # TODO addn timestamp back
def save_videos(video, dt, video_path=None):
if isinstance(video, list):
cam_names = list(video[0].keys())
h, w, _ = video[0][cam_names[0]].shape
w = w * len(cam_names)
fps = int(1/dt)
out = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
for ts, image_dict in enumerate(video):
images = []
for cam_name in cam_names:
image = image_dict[cam_name]
image = image[:, :, [2, 1, 0]] # swap B and R channel
images.append(image)
images = np.concatenate(images, axis=1)
out.write(images)
out.release()
print(f'Saved video to: {video_path}')
elif isinstance(video, dict):
cam_names = list(video.keys())
all_cam_videos = []
for cam_name in cam_names:
all_cam_videos.append(video[cam_name])
all_cam_videos = np.concatenate(all_cam_videos, axis=2) # width dimension
n_frames, h, w, _ = all_cam_videos.shape
fps = int(1 / dt)
out = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
for t in range(n_frames):
image = all_cam_videos[t]
image = image[:, :, [2, 1, 0]] # swap B and R channel
out.write(image)
out.release()
print(f'Saved video to: {video_path}')
def visualize_joints(qpos_list, command_list, plot_path=None, ylim=None, label_overwrite=None):
if label_overwrite:
label1, label2 = label_overwrite
else:
label1, label2 = 'State', 'Command'
qpos = np.array(qpos_list) # ts, dim
command = np.array(command_list)
num_ts, num_dim = qpos.shape
h, w = 2, num_dim
num_figs = num_dim
fig, axs = plt.subplots(num_figs, 1, figsize=(w, h * num_figs))
# plot joint state
all_names = [name + '_left' for name in STATE_NAMES] + [name + '_right' for name in STATE_NAMES]
for dim_idx in range(num_dim):
ax = axs[dim_idx]
ax.plot(qpos[:, dim_idx], label=label1)
ax.set_title(f'Joint {dim_idx}: {all_names[dim_idx]}')
ax.legend()
# plot arm command
for dim_idx in range(num_dim):
ax = axs[dim_idx]
ax.plot(command[:, dim_idx], label=label2)
ax.legend()
if ylim:
for dim_idx in range(num_dim):
ax = axs[dim_idx]
ax.set_ylim(ylim)
plt.tight_layout()
plt.savefig(plot_path)
print(f'Saved qpos plot to: {plot_path}')
plt.close()
def visualize_timestamp(t_list, dataset_path):
plot_path = dataset_path.replace('.pkl', '_timestamp.png')
h, w = 4, 10
fig, axs = plt.subplots(2, 1, figsize=(w, h*2))
# process t_list
t_float = []
for secs, nsecs in t_list:
t_float.append(secs + nsecs * 10E-10)
t_float = np.array(t_float)
ax = axs[0]
ax.plot(np.arange(len(t_float)), t_float)
ax.set_title(f'Camera frame timestamps')
ax.set_xlabel('timestep')
ax.set_ylabel('time (sec)')
ax = axs[1]
ax.plot(np.arange(len(t_float)-1), t_float[:-1] - t_float[1:])
ax.set_title(f'dt')
ax.set_xlabel('timestep')
ax.set_ylabel('time (sec)')
plt.tight_layout()
plt.savefig(plot_path)
print(f'Saved timestamp plot to: {plot_path}')
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_dir', action='store', type=str, help='Dataset dir.', required=True)
parser.add_argument('--episode_idx', action='store', type=int, help='Episode index.', required=False)
main(vars(parser.parse_args()))