forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab-04-3-file_input_linear_regression.py
54 lines (41 loc) · 1.54 KB
/
lab-04-3-file_input_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Lab 4 Multi-variable linear regression
import tensorflow as tf
import numpy as np
tf.set_random_seed(777) # for reproducibility
xy = np.loadtxt('data-01-test-score.csv', delimiter=',', dtype=np.float32)
x_data = xy[:, 0:-1]
y_data = xy[:, [-1]]
# Make sure the shape and data are OK
print(x_data.shape, x_data, len(x_data))
print(y_data.shape, y_data)
# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 3])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([3, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
# Hypothesis
hypothesis = tf.matmul(X, W) + b
# Simplified cost/loss function
cost = tf.reduce_mean(tf.square(hypothesis - Y))
# Minimize
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-5)
train = optimizer.minimize(cost)
# Launch the graph in a session.
sess = tf.Session()
# Initializes global variables in the graph.
sess.run(tf.global_variables_initializer())
for step in range(2001):
cost_val, hy_val, _ = sess.run(
[cost, hypothesis, train], feed_dict={X: x_data, Y: y_data})
if step % 10 == 0:
print(step, "Cost: ", cost_val, "\nPrediction:\n", hy_val)
# Ask my score
print("Your score will be ", sess.run(
hypothesis, feed_dict={X: [[100, 70, 101]]}))
print("Other scores will be ", sess.run(hypothesis,
feed_dict={X: [[60, 70, 110], [90, 100, 80]]}))
'''
Your score will be [[ 181.73277283]]
Other scores will be [[ 145.86265564]
[ 187.23129272]]
'''