-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslides.tex
547 lines (450 loc) · 15.8 KB
/
slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
\documentclass[compress]{beamer}% [handout][compress]
% use handout option for one slide per page
% \mode<presentation>
%regular LaTeX title/author info
%\AtBeginSection[]{} % for optional outline or other recurrent slide
\setbeamertemplate{footline}[frame number]
\setbeamerfont{caption}{size=\tiny}
\beamertemplatenavigationsymbolsempty
\definecolor{darkgreen}{rgb}{0,0.7,0}
\mode<presentation>
{
\usetheme{Frankfurt}
\usecolortheme{seahorse}
\setbeamercovered{transparent}
\setbeamercolor{math text}{fg=\notcolor}
\setbeamercolor{math text displayed}{fg=\notcolor}
}
\newenvironment{myalign}
{\align\color{\notcolor}}
{
\nonumber
\endalign
\vspace{-1em}
}
\newenvironment{myitemize}
{\itemize\itemsep 0mm}
{\enditemize}
% \let\myalign\align
% \let\endmyalign\endalign
% \def\myalign{\begingroup \myalign}
% \def\endmyalign{\endmyalign \endgroup}
% \usepackage{psfrag}
% \input{psfrags.tex}
% \input{./packages.tex}
% \input{./macros_TS.tex}
\input{./nots.tex}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% hyperlinks in the document
\usepackage{hyperref}
% https://tex.stackexchange.com/questions/823/remove-ugly-borders-around-clickable-cross-references-and-hyperlinks
\hypersetup{
colorlinks,
linkcolor={red!80!black},
citecolor={blue!50!black},
urlcolor={blue!80!black}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% https://tex.stackexchange.com/questions/135649/make-citemy-reference-show-name-and-year
\usepackage{natbib} % citations including name and year
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% multicolumns in item lists (from viva slides)
\usepackage{multicol}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% http://tex.stackexchange.com/questions/33969/changing-font-size-of-selected-slides-in-beamer
% \usepackage{lipsum} % lorem ipsum
% \newcommand\Fontvi{\footnotesize\selectfont}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\institute{\footnotesize
College of Engineering, Mathematics and Physical Sciences \\[1ex]
% \includegraphics[width=0.3\linewidth]{exeLogo.pdf}
}
\title{ADAPT Online Meeting:\\ Carbon Fibre Consolidation}
\author{ \textbf{\Large Tom\'a\v s Star\'y} \\ {\footnotesize\it advised by} \\[1ex] \textbf{\Large Tim Dodwell}
}
\date{
\it Tue 29 November 2016
}
\newcommand{\highlight}[1]{\boxed{#1}}
\begin{document}
% title page
\frame{\titlepage}
% outline
\section[Outline]{}
\frame{\tableofcontents}
\section{Introduction}
\subsection{Problem Definition}
\begin{frame}[label=A]
\frametitle{Physical Considerations}
\begin{columns}
\begin{column}{0.4\textwidth}
\includegraphics{fibre_bed.pdf}
\end{column}
\begin{column}{0.6\textwidth}
\begin{itemize}
\item Controlled variables (in time $t$)
\begin{itemize}
\item $\temp$ -- temperature,
\item $F$ -- applied force, or
\item $u(L,t)$ -- boundary deformation.
% \begin{myalign}
% u(L,t) =
% \begin{cases}
% -Rt &\text{ for } t < \duration,\\
% -R\duration &\text{ for } t > \duration.
% \end{cases}
% \end{myalign}
\end{itemize}
\item Resin flow through the pores
\begin{myalign}
\flow(x,t) = -\frac{\permeab(x)}{\viscos(t)} \press_{,x}
\end{myalign}
\begin{itemize}
\item $\permeab$ -- permeability,
\item $\viscos$ -- resin viscosity,
\item $\press$ -- resin pressure, $\press_{,x}= \dd P/\dd x$.
\end{itemize}
\item Stress in the fibre bed
%
\begin{myalign}
\stress(x,t) = \efstress(x,t) - \press(x,t)
\end{myalign}
%
\begin{itemize}
\item $\efstress$ -- effective stress.
\end{itemize}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\subsection{Simplified Model}
% \againframe{A}
\begin{frame}
\frametitle{Fibre Bed Deformation}
% \begin{columns}
% \begin{column}{0.6\textwidth}
Stress in the fibre bed
%
\begin{myalign}
\stress(x,t) = \efstress(x,t) - \press(x,t)
\end{myalign}
Assumptions:
\begin{itemize}
\item small displacement: $\efstress =E u_{,x}$
\item static equilibrium: $\stress_{,x}= 0$
\end{itemize}
Using relation
$\press_{,x} =- \frac{\viscos(t)}{\permeab(x)} v$ and $\flow = -u_{,t}$
we get
\begin{myalign}
E u_{,xx} - \frac{\viscos(t)}{\permeab(x)} u_{,t} =0
\end{myalign}
\begin{itemize}
\item $u_{,xx} =\dd^2 u/ \dd x^2$,
$u_{,t} =\dd u/ \dd t$.
\end{itemize}
% \end{column}
% \begin{column}{0.4\linewidth}
% When ${\viscos(t)},{\permeab(x)},E=1$
% \includegraphics[width=1.0\linewidth]{deform.eps}\\
% \includegraphics[width=1.0\linewidth]{flow.eps}
% % \includegraphics{cure-temp-viscos.pdf}
% \end{column}
% \end{columns}
\end{frame}
\section{Finite Difference}
\subsection{Solution}
\begin{frame}
\frametitle{Solution}
Simplified problem when ${\viscos(t)},{\permeab(x)}$ and $E=1$:
\begin{align}
\label{eq:heat}
&u_{,xx}(x,t) - u_{,t}(x,t) + f(x)
= 0,&& u(0,t) = 0, \\\nonumber
&u(x,0) = 0, u(L,t) =
\begin{cases}
-Rt &\text{ for } t < \duration,\\
-R\duration &\text{ for } t > \duration.
\end{cases}
\end{align}
\begin{figure}
\centering
\includegraphics[width=1.0\linewidth]{heat.pdf}
% \caption{Finite difference solution of equation
% \eqref{eq:heat}. Panel (a) shows the dependence of the deformation
% of the fibre bed on time at the boundaries $x=0$ (violet line) and
% $x=1$ (yellow line) and in the interior points $x=0.2$ (green
% line) and $x=0.5$ (blue line) (b) shows the dependence of the
% displacement on the possition in the frame of reference $x$ at the
% initial conditions (violet line), at $t=0.1$ (green line), at
% $t=0.2$ (blue line) and at the end of the simulation $t=0.4$
% (yellow line). Panel (c) shows colour coded map (left bar) of the
% deformation dependent on the time (vertical axis) and the frame of
% reference (horizontal axis). The a gray scale map from white
% colour which corresponds to small deformation to black which
% corresponds to maximal deformation of $-0.02$ is complemented by a
% contour lines ad four different values as specified in the legend.}
\label{fig:findiff-heat}
\end{figure}
\end{frame}
\subsection{Numerical Error and Stability}
\begin{frame}
\frametitle{Numerical Error and Stability}
Finite difference algorithm:
\begin{align}
\disp{i}{j+1} = \disp{i}{j} + \dt\left(\frac{\disp{i+1}{j} - 2\disp{i}{j} + \disp{i-1}{j}}{\dx^2} + f(x_i) \right) +
\bigO{\dt} + \bigO{\dx^2}. \nonumber
\label{eq:findiff-alg}
\end{align}
%
Solution $\disp{i}{j}\approx u(x_i,t_j)$ with discretisation
$ x_i = i\dx$, $ t_j = j\dt$ for $j = 1, 2, \dots, N_t$ and
$i = 1, 2, \dots, N_x$.
Stable solution for $ \dt < \frac{\dx^2}{2\max(D)}$.
Error $\errU = \norm{\hat{u} - u}$.
%
\begin{figure}
\centering
\includegraphics[width=\linewidth]{error.pdf}
% \caption{Analysis of the error of the solution. Panel (a) shows the
% boundary between stable and unstable region in the $\dx$--$\dt$
% plane according to \eqref{eq:stable-boundary} where $\max(D) =
% 1$. Panel (b) and (c) shows the norm of the error in the
% computation of the heat equation in (b) dependent on $\dt$ at
% $\dx=0.1$, in (c) as dependent on $\dx$ at $\dt=1e-7$.}
\label{fig:error-analysis}
\end{figure}
\end{frame}
\section{Resin Flow Model}
\subsection{Fibre Volume Fraction}
\begin{frame}
\frametitle{Fibre Volume Fraction}
\begin{columns}
\begin{column}{0.6\linewidth}
Fibre volume fraction (FVF)
\begin{myalign}
\vfrac(\strain) = \frac{\vzero}{1+\strain(x,t)}
\end{myalign}
\begin{itemize}
\item $\vzero=0.55$ -- initial FVF,
\item $\strain(x,t) = u_{,x}$ -- strain.
\end{itemize}
\end{column}
\begin{column}{0.4\linewidth}
\includegraphics{consolidation.pdf}
\end{column}
\end{columns}
\end{frame}
\subsection{Fibre Bed Permeability}
\begin{frame}
\frametitle{Fibre Bed Permeability}
% \begin{columns}
% \begin{column}{0.6\linewidth}
The equation of the flow
\begin{myalign}
\flow(x,t) = -\frac{\permeab(x)}{\viscos(t)} \press_{,x} .
\end{myalign}
Permeability by \citet{Dave1987b}
\begin{myalign}
\permeab(\vfrac) = \frac{r_f^2}{4\kozeny} \frac{(1-\vfrac)^3}{\vfrac^2}
\end{myalign}
\begin{itemize}
\itemsep 0mm
% \item $r_f, \kozeny$ -- constants,
\item $r_f=4\ee{-3}$~mm -- radius of fibre,
\item $\kozeny=0.2$~1/s -- ``Kozeny'' constant,
\item $\vfrac$ -- fibre volume fraction (FVF).
% \begin{myalign}
% \vfrac(\strain) = \frac{\vzero}{1+\strain(x)}
% \end{myalign}
% \begin{itemize}
% \item $\vzero$ -- initial FVF,
% \item $\strain(x)$ -- strain.
% \end{itemize}
\end{itemize}
% \end{column}
% \begin{column}{0.4\linewidth}
% \includegraphics{permeab-vf.pdf}\\
% % \includegraphics{vf-strain.pdf}
% \end{column}
% \end{columns}
\begin{figure}
\centering
\includegraphics[width=0.66\linewidth]{permeab.pdf}
% \caption{Permeability of the fibre bed during the consolidation.
% The figure (a) The combination of dependence of volume fraction on
% the strain as shown in \figref{fig:consolidation}(a), combined
% with the dependence of the permeability on volume fraction shown
% in this figure panel (a), gives the dependence of the
% permeability as a function of strain as shown in panel (b).}
\label{fig:permeab}
\end{figure}
\end{frame}
\subsection{Resin Viscosity}
\begin{frame}
\frametitle{Resin Viscosity}
% \begin{columns}
% \begin{column}{0.6\linewidth}
Viscosity by \citet{Kenny1992}
\begin{myalign}
\viscos(\temp,\cure) =
\viscosinf \exp{\frac{E_\viscos }{R \temp}} \left(\frac{\curegel}{\curegel - \cure}\right)^{A+B\cure}
\end{myalign}
{\begin{multicols}{2}
\begin{itemize}
% \itemsep 0mm
\item $\viscosinf=3.45\ee{-10}$~Pa$\cdot$s, % -- viscosity asymptote
\item $E_\viscos = 7.6536\ee{5}$~J/mol, % -- activation energy
\item $R = 8.617$~eV/K -- gas constant,
\item $\curegel = 0.47$ -- cure at gelation,
\item $A, B$ -- constants,
% \item $\viscosinf,E_\viscos, R, A, B$ -- constants,
% \item $\curegel = 0.47$ -- cure at gelation,
\item $\cure$ -- degree of cure.
\end{itemize}
\end{multicols}}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{viscosity.pdf}
% \caption{Viscosity of the resin. Panel (a) shows the dependence of the
% viscosity on the temperature for three different values of
% $\cure$: magenta line $\cure=0.1$, green line $\cure=0.2$, cyan
% line $\cure=0.4$, panel (b) shows the dependence of the viscosity
% on the degree of cure for three different temperatures: magenta
% line $\temp = 100$\degree C, green line $\temp = 130$\degree C, and cyan line
% $\temp = 180$\degree C.}
\label{fig:viscos}
\end{figure}
\end{frame}
\subsection{Resin Cure}
\begin{frame}
\frametitle{Resin Cure}
% \begin{columns}
% \begin{column}{0.6\linewidth}
Degree of cure
\begin{myalign}
\cure_{,t} = A_\cure \exp{-\frac{E_\cure }{R\temp}} \cure^m
(1-\cure)^n
\end{myalign}
\begin{itemize}
\item $A_\cure=1.53\ee{5}$~1/s,
\item $E_\cure=6.65\ee{4}$~J/mol,
\item $m=0.813$, $n=2.74$.
% \item $A_\cure, E_\cure, m, n$ constants.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{dcure.pdf}
% \caption{Rate of cure of the resin. Panel (a) shows the dependence of the
% rate of cure on the temperature for three different values of
% $\cure$: magenta line $\cure=0.1$, green line $\cure=0.2$, cyan
% line $\cure=0.4$, panel (b) shows the dependence of the rate of cure
% on the degree of cure for three different temperatures: magenta
% line $\temp = 100$\degree C, green line $\temp = 130$\degree C, and cyan line
% $\temp = 180$\degree C.}
\label{fig:cure}
\end{figure}
% \end{column}
% \begin{column}{0.4\linewidth}
% % \includegraphics{viscosity-map.pdf}\\
% \includegraphics{dcure-map.pdf}
% \end{column}
% \end{columns}
\end{frame}
\begin{frame}
\frametitle{Resin Viscosity in Autoclave Processing}
Autoclave temperature protocol
\begin{itemize}
\item first $30$ minutes: from $\temp_0=30$\degree C to $\temp_f=107$\degree C,
\item next $30$ minutes to allow resin flow at $\temp_f$,
\item next $30$~minutes: from $\temp_f$ to $\temp_c=176$\degree C,
\item final $30$~minutes at $\temp_c$ to complete resin cure.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.66\linewidth]{cure.pdf}
% \caption{Time evolution of the cure of the resin in the autoclave
% experiment (a), and related evolution of the viscosity of the
% resin (b). The ODE \eqref{eq:cure} is subject to the autoclave
% temperature protocol (shown in green lines, labels on the right
% axis in (b) applies to both panels).}
\label{fig:cure-exp}
\end{figure}
% \centering
% \begin{tabular}{l@{\hspace{3em}}l}
% \includegraphics{cure-temp-cure.pdf}&
% \includegraphics{cure-temp-viscos.pdf}
% \end{tabular}
\end{frame}
\section{Effective Stress}
\begin{frame}
\frametitle{Effective stress}
% \begin{columns}
% \begin{column}{0.6\textwidth}
Effective stress by \citet{Gutowski1987}
\begin{myalign}
\efstress(\vfrac) = \spring
\frac{\frac{\vfrac}{\vzero} -1}{\left(\frac{1}{\vfrac} -\frac{1}{\vmax}\right)^4}
\end{myalign}
\begin{itemize}
\item $\spring$ -- ``spring constant'',
\item $\vzero = 0.55$ -- initial FVF,
\item $\vmax = 0.68$ -- maximal FVF.
% \item Fibre volume fraction (FVF)
% \begin{myalign}
% \vfrac(\strain) = \frac{\vzero}{1+\strain(x)}
% \end{myalign}
% \begin{itemize}
% \item $\strain(x)$ -- strain.
% \end{itemize}
\end{itemize}
% \end{column}
% \begin{column}{0.4\textwidth}
% \includegraphics{stress-strain.pdf}
% % \includegraphics{vf-strain.pdf}
% \end{column}
% \end{columns}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{consolidation.pdf}
% \caption{Mechanical properties of the material during the consolidation of the carbon fibres. The combination of dependence of volume fraction on the strain as shown in panel (a), combined with the dependence of stress on volume fraction shown in panel (b), gives the dependence of the stress as a function of strain as shown in panel (c).}
\label{fig:consolidation}
\end{figure}
\end{frame}
\section{Conclusions}
\begin{frame}
\frametitle{Conclusions}
Results
\begin{itemize}
\item finite difference model for resin flow,
\item error and stability analysis,
\item fibre cure model,
\item description of relevant physics.
\end{itemize}
Further work
\begin{itemize}
\item fibre bed stiffening,
\item finite element method,
\item extending the code into 2D and 3D,
\item implementation in DUNE.
\end{itemize}
\end{frame}
% \againframe{A}
% \begin{frame}
% Darcy's law for a flow through porous medium
% \begin{myalign}
% v(x,t) = -\frac{\permeab(\vfrac)}{\viscos(\temp,\cure)} \press_{,x}
% \end{myalign}
% \begin{itemize}
% % \item $v$ -- velocity of the flow
% \item $\press_{,x}$ -- gradient of resin pressure ($\dd \press/\dd x$)
% \end{itemize}
% \end{frame}
\bibliographystyle{apalike}
\begin{frame}
\frametitle{References}
\bibliography{references}
\end{frame}
\end{document}