-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathadagan_icml.py
133 lines (123 loc) · 5.49 KB
/
adagan_icml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright 2017 Max Planck Society
# Distributed under the BSD-3 Software license,
# (See accompanying file ./LICENSE.txt or copy at
# https://opensource.org/licenses/BSD-3-Clause)
"""Training AdaGAN on various datasets.
Refer to the arXiv paper 'AdaGAN: Boosting Generative Models'
Coded by Ilya Tolstikhin, Carl-Johann Simon-Gabriel
"""
import os
import argparse
import logging
import tensorflow as tf
import numpy as np
from datahandler import DataHandler
from adagan import AdaGan
from metrics import Metrics
import utils
flags = tf.app.flags
flags.DEFINE_float("g_learning_rate", 0.0008,
"Learning rate for Generator optimizers [16e-4]")
flags.DEFINE_float("d_learning_rate", 0.0008,
"Learning rate for Discriminator optimizers [4e-4]")
flags.DEFINE_float("learning_rate", 0.0008,
"Learning rate for other optimizers [8e-4]")
flags.DEFINE_float("adam_beta1", 0.5, "Beta1 parameter for Adam optimizer [0.5]")
flags.DEFINE_integer("zdim", 100, "Dimensionality of the latent space [100]")
flags.DEFINE_float("init_std", 0.02, "Initial variance for weights [0.02]")
flags.DEFINE_string("workdir", 'results_guitars', "Working directory ['results']")
flags.DEFINE_bool("unrolled", False, "Use unrolled GAN training [True]")
flags.DEFINE_bool("is_bagging", False, "Do we want to use bagging instead of adagan? [False]")
FLAGS = flags.FLAGS
def main():
opts = {}
opts['random_seed'] = 66
opts['dataset'] = 'guitars' # gmm, circle_gmm, mnist, mnist3 ...
opts['unrolled'] = FLAGS.unrolled # Use Unrolled GAN? (only for images)
opts['unrolling_steps'] = 5 # Used only if unrolled = True
opts['data_dir'] = 'mnist'
opts['trained_model_path'] = 'models'
opts['mnist_trained_model_file'] = 'mnist_trainSteps_19999_yhat' # 'mnist_trainSteps_20000'
opts['gmm_max_val'] = 15.
opts['toy_dataset_size'] = 10000
opts['toy_dataset_dim'] = 2
opts['mnist3_dataset_size'] = 2 * 64 # 64 * 2500
opts['mnist3_to_channels'] = False # Hide 3 digits of MNIST to channels
opts['input_normalize_sym'] = True # Normalize data to [-1, 1]
opts['adagan_steps_total'] = 3
opts['samples_per_component'] = 1000 # 50000
opts['work_dir'] = FLAGS.workdir
opts['is_bagging'] = FLAGS.is_bagging
opts['beta_heur'] = 'uniform' # uniform, constant
opts['weights_heur'] = 'theory_star' # theory_star, theory_dagger, topk
opts['beta_constant'] = 0.5
opts['topk_constant'] = 0.5
opts["init_std"] = FLAGS.init_std
opts["init_bias"] = 0.0
opts['latent_space_distr'] = 'normal' # uniform, normal
opts['optimizer'] = 'adam' # sgd, adam
opts["batch_size"] = 64
opts["d_steps"] = 1
opts["g_steps"] = 1
opts["verbose"] = True
opts['tf_run_batch_size'] = 100
opts['gmm_modes_num'] = 5
opts['latent_space_dim'] = FLAGS.zdim
opts["gan_epoch_num"] = 50
opts["mixture_c_epoch_num"] = 5
opts['opt_learning_rate'] = FLAGS.learning_rate
opts['opt_d_learning_rate'] = FLAGS.d_learning_rate
opts['opt_g_learning_rate'] = FLAGS.g_learning_rate
opts["opt_beta1"] = FLAGS.adam_beta1
opts['batch_norm_eps'] = 1e-05
opts['batch_norm_decay'] = 0.9
opts['d_num_filters'] = 64
opts['g_num_filters'] = 64
opts['conv_filters_dim'] = 4
opts["early_stop"] = -1 # set -1 to run normally
opts["plot_every"] = 1 # set -1 to run normally
opts["eval_points_num"] = 1000 # 25600
opts['digit_classification_threshold'] = 0.999
opts['inverse_metric'] = True # Use metric from the Unrolled GAN paper?
opts['inverse_num'] = 64 # Number of real points to inverse.
if opts['verbose']:
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(message)s')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
utils.create_dir(opts['work_dir'])
with utils.o_gfile((opts['work_dir'], 'params.txt'), 'w') as text:
text.write('Parameters:\n')
for key in opts:
text.write('%s : %s\n' % (key, opts[key]))
data = DataHandler(opts)
assert data.num_points >= opts['batch_size'], 'Training set too small'
adagan = AdaGan(opts, data)
metrics = Metrics()
for step in range(opts["adagan_steps_total"]):
logging.info('Running step {} of AdaGAN'.format(step + 1))
adagan.make_step(opts, data)
num_fake = opts['eval_points_num']
logging.debug('Sampling fake points')
fake_points = adagan.sample_mixture(num_fake)
logging.debug('Sampling more fake points')
more_fake_points = adagan.sample_mixture(500)
logging.debug('Plotting results')
if opts['dataset'] == 'gmm':
metrics.make_plots(opts, step, data.data[:500],
fake_points[0:100], adagan._data_weights[:500])
logging.debug('Evaluating results')
(likelihood, C) = metrics.evaluate(
opts, step, data.data[:500],
fake_points, more_fake_points, prefix='')
else:
metrics.make_plots(opts, step, data.data,
fake_points[:6 * 16], adagan._data_weights)
logging.debug('Evaluating results')
if opts['inverse_metric']:
l2 = np.min(adagan._invert_losses[:step + 1], axis=0)
logging.debug('MSE=%.5f, STD=%.5f' % (np.mean(l2), np.std(l2)))
res = metrics.evaluate(
opts, step, data.data[:500],
fake_points, more_fake_points, prefix='')
logging.debug("AdaGan finished working!")
if __name__ == '__main__':
main()