-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path007. Spiral traversal.py
54 lines (44 loc) · 1.48 KB
/
007. Spiral traversal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Spiral traversal
"""
Given an m x n matrix, return all elements of the matrix in spiral order.
Input: matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
Output: [1,2,3,4,8,12,11,10,9,5,6,7]
Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [1,2,3,6,9,8,7,4,5]
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 10
-100 <= matrix[i][j] <= 100
"""
# O(n) Time Complexity | O(n) Space Complexity
def spiralTraversal(matrix):
result = []
sR, eR = 0, len(matrix) - 1
sC, eC = 0, len(matrix[0]) - 1
# print(matrix[sR][eR])
while sR <= eR and sC <= eC:
for col in range(sC, eC + 1):
print(matrix[sR][col], 4,sR,col)
result.append(matrix[sR][col])
for row in range(sR + 1, eR + 1):
print(matrix[row][eC], 3)
result.append(matrix[row][eC])
for col in reversed(range(sC, eC)):
if sR == eR:
break
print(matrix[eR][col], 2,eR,col)
result.append(matrix[eR][col])
for row in reversed(range(sR + 1, eR)):
if sC == eC:
break
print(matrix[row][sC], 1)
result.append(matrix[row][sC])
sR += 1
sC += 1
eR -= 1
eC -= 1
return result
print(spiralTraversal([[7],[9],[6]]))
# print(spiralTraversal([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) == [1, 2, 3, 6, 9, 8, 7, 4, 5])
# print(spiralTraversal([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) == [1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7])