-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelsummary.py
45 lines (35 loc) · 1.21 KB
/
modelsummary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import numpy as np
from torch_geometric.datasets import TUDataset
from torch_geometric.data import DataLoader
from torch_geometric import utils
from networks3 import Net # import your network here
import torch.nn.functional as F
import argparse
import os
from torch.utils.data import random_split
from torch.utils.data.dataset import Subset
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='DS',
help='dataset directory under /data. e.g. DS')
#Load GPU (If present)
args = parser.parse_args()
args.device = 'cpu'
args.seed = 777
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
args.device = 'cuda:0'
#Read dataset using TUDataset
dataset = TUDataset(os.path.join('data',args.dataset),name=args.dataset,use_node_attr=True)
print(dataset)
args.num_classes = dataset.num_classes
args.num_features = dataset.num_features
print(args.num_features)
args.nhid = 128 #set your hidden layer setting here [8 or 128]
args.pooling_ratio = 0.5
args.dropout_ratio = 0.5
#Evaluate the model on the Independent Test Set
model = Net(args).to(args.device)
model.load_state_dict(torch.load('latest.pth'))
print(model)