-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining.py
316 lines (253 loc) · 12.5 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from dotenv import load_dotenv
import os
from torch.utils.data import DataLoader
# from models.unet import EEGtoMEGUNet #Uncomment if not using wavelet transform
from models.wavelet_unet import EEGtoMEGUNet # Comment out if not using wavelet transform
import matplotlib.pyplot as plt
import json
import torch
import torch.nn as nn
import torch.optim as optim
import logging
from tqdm import tqdm
import traceback
import signal
import sys
import time
import wandb
from dataset.shard_loader import ShardDataLoader
from dataset.dataset_builder import DatasetDownloader
import re # Import the re module for regular expressions
from dataset.wavelet_filtering import Wavelet_Transformer
# Flag to indicate if termination has been requested
termination_requested = False
def signal_handler(signum, frame):
global termination_requested
print(f"Received signal {signum}. Termination requested.")
termination_requested = True
raise KeyboardInterrupt
def main():
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
# Load training runs configuration
with open('training_runs.json', 'r') as f:
training_runs = json.load(f)
for run_config in training_runs:
# Obtain base run name
base_run_name = run_config.get('name', 'default_run')
# Prepare the runs directory
runs_directory = 'runs'
os.makedirs(runs_directory, exist_ok=True)
# Get list of existing run directories
existing_run_dirs = [d for d in os.listdir(runs_directory) if os.path.isdir(os.path.join(runs_directory, d))]
# Initialize run_name
run_name = base_run_name
# Find existing runs with the same base name
matching_runs = [d for d in existing_run_dirs if d.startswith(base_run_name)]
if matching_runs:
# Extract numerical suffixes
suffixes = []
for run_dir in matching_runs:
# Match pattern: base_run_name followed by optional digits
match = re.match(rf'^{re.escape(base_run_name)}(\d*)$', run_dir)
if match:
suffix = match.group(1)
if suffix == '':
suffix_int = 0
else:
suffix_int = int(suffix)
suffixes.append(suffix_int)
new_suffix = max(suffixes) + 1
if new_suffix == 0:
run_name = base_run_name
else:
run_name = f"{base_run_name}{new_suffix}"
else:
run_name = base_run_name
# Update run_config['name'] with adjusted run_name
run_config['name'] = run_name
num_epochs = run_config.get('epochs', 10)
files_percentage = run_config.get('files_percentage', 1.0)
verbose = run_config.get('verbose', False)
num_workers = run_config.get('num_workers', 4)
batch_size = run_config.get('batch_size', 128)
prefetch_factor = run_config.get('prefetch_factor', 3)
model_weights_file = run_config.get('model_weights_file', '')
learning_rate = run_config.get('learning_rate', 0.0001)
task_mode = run_config.get('task_mode', 'gait')
breakRun = run_config.get('break', False)
if breakRun:
break
# Initialize W&B run
wandb.init(project="Synaptech",
name=run_name,
config=run_config)
log_folder_name = f'{runs_directory}/{run_name}'
os.makedirs(log_folder_name, exist_ok=True)
weight_file_set = False
initialWeightsFile = f"{log_folder_name}/model_initial.pth"
if model_weights_file:
initialWeightsFile = model_weights_file
weight_file_set = True
def printConfig():
logger.info("INITIALIZING TRAINING RUN")
logger.info("Run Configuration:")
logger.info(f"run_name: {run_name}")
logger.info(f"num_epochs: {num_epochs}")
logger.info(f"learning_rate: {learning_rate}")
logger.info(f"model_weights_file: {model_weights_file}")
logger.info(f"files_percentage: {files_percentage}")
logger.info(f"verbose: {verbose}")
logger.info(f"batch_size: {batch_size}")
logger.info(f"num_workers: {num_workers}")
logger.info(f"prefetch_factor: {prefetch_factor}")
logging.basicConfig(filename=f'{log_folder_name}/training_log.log', level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger()
# Suppress warnings from matplotlib font manager
logging.getLogger('matplotlib.font_manager').setLevel(logging.ERROR)
if verbose:
logger.setLevel(logging.DEBUG)
# Print configuration
printConfig()
logger.info("Checking device..")
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
logger.info(f"Using: {device}")
logger.info("Loading Data...")
train_loader = None
val_loader = None
logger.info("Loading OpenFMRI dataset...")
load_dotenv()
dataset_path = os.getenv("DATASET_PATH")
logger = logging.getLogger()
#Downloads the dataset
DatasetDownloader(downloadAndPrepareImmediately=True, datasetPath=dataset_path, processImmediately=True, processingMode='raw', logger=logger, verbose=False)
#Performs wavelet frequency filtering
Wavelet_Transformer(dataset_path=dataset_path, mode='all', eeg_channel=13, mag_channel=21)
shard_data_loader_train = ShardDataLoader(dataset_path=dataset_path, mode='train', logger=logger, verbose=verbose, wavelet=True)
shard_data_loader_val = ShardDataLoader(dataset_path=dataset_path, mode='val', logger=logger, verbose=verbose, wavelet=True)
sample_length = 275
print ("i think its donezo")
# Initialize model
logger.info("Initializing model...")
model = EEGtoMEGUNet()
model = model.to(device)
logger.info("Initializing loss function & optimizer...")
criterion = nn.MSELoss()
optimizer = optim.Adam(params=model.parameters())
epoch_stats = None
train_losses = []
val_losses = []
train_accuracies = []
val_accuracies = []
train_f1_scores = []
val_f1_scores = []
y_true = []
y_scores = []
# Load initial weights file
if not os.path.isfile(initialWeightsFile) and weight_file_set:
logger.error(f"Provided model weights file {initialWeightsFile} does not exist. Exiting.")
sys.exit(1)
elif not os.path.isfile(initialWeightsFile):
logger.warning(f"No initial model weights file {initialWeightsFile} found. Continuing training from scratch.")
torch.save(model.state_dict(), initialWeightsFile)
logger.info(f"Initial model weights saved to {initialWeightsFile}")
else:
logger.info(f"Loading model weights from {initialWeightsFile}")
model.load_state_dict(torch.load(initialWeightsFile, map_location=device))
logger.info(f"Model initialized with weights from {initialWeightsFile}")
logger.info(f"Training for {num_epochs} epochs...")
try:
for epoch in range(num_epochs):
if termination_requested:
logger.warning("Termination requested. Exiting outer training loop.")
break
# Prepare DataLoaders for this epoch
logger.info("Preparing training data for epoch...")
train_dataset = shard_data_loader_train.prepare_epoch_dataset(sample_length=sample_length)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=num_workers, prefetch_factor=prefetch_factor, pin_memory=device.type == 'cuda')
logger.info("Preparing validation data for epoch...")
val_dataset = shard_data_loader_val.prepare_epoch_dataset(sample_length=sample_length)
val_loader = DataLoader(val_dataset, shuffle=False, batch_size=batch_size, num_workers=num_workers, prefetch_factor=prefetch_factor, pin_memory=device.type == 'cuda')
# Training loop
running_loss = 0.0
model.train()
progress_bar = tqdm(total=len(train_loader), desc=f"Epoch [{epoch+1}/{num_epochs}] - Training - started {time.strftime('%H:%M')}", leave=True)
for batch_idx, (inputs, labels) in enumerate(train_loader):
if termination_requested:
logger.warning("Termination requested. Exiting inner training loop.")
break
progress_bar.update(1)
inputs = inputs.to(device).float()
labels = labels.to(device).float()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
# Log batch metrics to W&B
wandb.log({
'batch_idx': batch_idx,
'batch_loss': loss.item(),
})
progress_bar.close()
# Calculate epoch's training loss
train_loss = running_loss / len(train_loader)
train_losses.append(train_loss)
# Validation loop
model.eval() # Set the model to evaluation mode
val_running_loss = 0.0
with torch.no_grad():
progress_bar = tqdm(total=len(val_loader), desc=f"Epoch [{epoch+1}/{num_epochs}] - Validation - started {time.strftime('%H:%M')}", leave=False)
for inputs, labels in val_loader:
if termination_requested:
logger.warning("Termination requested. Exiting validation loop.")
break
inputs = inputs.to(device).float()
labels = labels.to(device).float()
outputs = model(inputs)
progress_bar.update(1)
loss = criterion(outputs, labels)
val_running_loss += loss.item()
progress_bar.close()
# Calculate epoch's validation loss
val_loss = val_running_loss / len(val_loader)
val_losses.append(val_loss)
# Log epoch metrics to W&B
wandb.log({
'epoch': epoch,
'train_loss': train_loss,
'val_loss': val_loss
})
# Log and save training history and weights
logger.info(f"EPOCH {epoch+1}: Val Loss: {val_loss:.4f}")
if num_epochs > 20:
if (epoch + 1) % 4 == 0:
torch.save(model.state_dict(), f'{log_folder_name}/model_epoch_{epoch+1}.pth')
elif num_epochs > 15:
if (epoch + 1) % 3 == 0:
torch.save(model.state_dict(), f'{log_folder_name}/model_epoch_{epoch+1}.pth')
elif num_epochs > 10:
if (epoch + 1) % 2 == 0:
torch.save(model.state_dict(), f'{log_folder_name}/model_epoch_{epoch+1}.pth')
else:
torch.save(model.state_dict(), f'{log_folder_name}/model_epoch_{epoch+1}.pth')
with open(f'{log_folder_name}/training_history.json', 'w') as f:
json.dump({
'train_losses': train_losses,
'val_losses': val_losses
}, f)
logger.info(f"TRAINING {num_epochs} EPOCHS COMPLETED")
except Exception as e:
torch.save(model.state_dict(), f'{log_folder_name}/model_epoch_{epoch+1}_error.pth')
logger.error(f"Training stopped due to an error: {str(e)}")
logger.error(traceback.format_exc())
finally:
wandb.finish()
logger.info("Saving epoch statistics")
if epoch_stats is not None:
with open(os.path.join(log_folder_name, 'epoch_stats.json'), 'w') as f:
json.dump(epoch_stats, f, indent=4)
if __name__ == "__main__":
main()