-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10-test.py
114 lines (66 loc) · 2.41 KB
/
cifar10-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# coding: utf-8
# In[2]:
# import os
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
# In[3]:
import numpy as np
import time
import keras.backend as K
from keras.datasets import cifar10
from keras.utils import np_utils
from keras.optimizers import Adam
from architectures import DenseNet40k12
# In[5]:
(X_train, y_train), (X_test,y_test) = cifar10.load_data()
nb_classes = len(np.unique(y_train))
img_dim = X_train.shape[1:]
n_channels = X_train.shape[-1]
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# In[6]:
# normalization
X = np.vstack((X_train, X_test))
for i in range(n_channels):
mean = np.mean(X[:,:,:,i])
std = np.std(X[:,:,:,i])
X_train[:,:,:,i] = (X_train[:,:,:,i] -mean)/std
X_test[:,:,:,i] = (X_test[:,:,:,i] -mean)/std
# In[7]:
# model
learning_rate = 1e-3
model = DenseNet40k12(img_dim,nb_classes)
model.summary()
# In[8]:
opt = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
model.compile(loss='categorical_crossentropy',optimizer=opt,
metrics=['accuracy'])
# In[ ]:
# train network
print("Starting training...")
list_train_loss = []
list_test_loss = []
list_learning_rate = []
nb_epoch = 7
batch_size = 64
for e in range(nb_epoch):
if e == int(0.5 * nb_epoch):
K.set_value(model.optimizer.lr, np.float32(learning_rate/10.))
if e == int(0.75 * nb_epoch):
K.set_value(model.optimizer.lr, np.float32(learning_rate/100.))
split_size = batch_size
num_splits = X_train.shape[0]/split_size
arr_splits = np.array_split(np.arange(X_train.shape[0]),num_splits)
l_train_loss = []
start =time.time()
for batch_idx in arr_splits:
X_batch, Y_batch = X_train[batch_idx], Y_train[batch_idx]
train_logloss, train_acc = model.train_on_batch(X_batch, Y_batch)
l_train_loss.append([train_logloss, train_acc])
test_logloss, test_acc = model.evaluate(X_test, Y_test, verbose=0, batch_size=64)
list_train_loss.append(np.mean(np.array(l_train_loss), 0).tolist())
list_test_loss.append([test_logloss, test_acc])
list_learning_rate.append(float(K.get_value(model.optimizer.lr)))
print("Epoch %s/%s, Time: %s" % (e + 1, nb_epoch, time.time() - start))