-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathfista_enet.m
38 lines (37 loc) · 1.05 KB
/
fista_enet.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
function X = fista_enet(Y, D, Xinit, opts)
opts = initOpts(opts);
lambda = opts.lambda;
lambda2 = opts.lambda2;
if numel(lambda) > 1 && size(lambda, 2) == 1
lambda = repmat(opts.lambda, 1, size(Y, 2));
end
if numel(Xinit) == 0
Xinit = zeros(size(D,2), size(Y,2));
end
%% cost f
function cost = calc_f(X)
cost = 1/2 *normF2(Y - D*X) + lambda2/2*normF2(X);
end
%% cost function
function cost = calc_F(X)
if numel(lambda) == 1 % scalar
cost = calc_f(X) + lambda*norm1(X);
elseif numel(lambda) == numel(X)
cost = calc_f(X) + norm1(lambda.*X);
end
end
%% gradient
DtD = D'*D + lambda2*eye(size(D, 2));
DtY = D'*Y;
function res = grad(X)
res = DtD*X - DtY;
end
%% Checking gradient
if opts.check_grad
check_grad(@calc_f, @grad, Xinit);
end
opts.max_iter = 500;
%% Lipschitz constant
L = max(eig(DtD));
[X, ~, ~] = fista_general(@grad, @proj_l1, Xinit, L, opts, @calc_F);
end