-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetrics.py
229 lines (198 loc) · 10.6 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse
import os
from legent import load_json, store_json
import re
index2json_path = "data/tasks/tasks.json"
index2json = load_json(index2json_path)
index2json = {str(i["index"]): i["task_file"] for i in index2json}
def calculate_goal_conditioned_success(goal_condition):
"""
Calculate the goal-conditioned success rate based on the given list of final goal conditions.
"""
total_goals = len(goal_condition)
return goal_condition.count(1) / total_goals
def list_folders(path):
folders = []
for entry in os.listdir(path):
entry_path = os.path.join(path, entry)
if os.path.isdir(entry_path):
folders.append(entry)
return folders
def aggregate_json_files(folder_path):
aggregated_data = []
for filename in os.listdir(folder_path):
if filename.endswith("a.json"):
file_path = os.path.join(folder_path, filename)
data = load_json(file_path)
aggregated_data.append(data)
return aggregated_data
def traj_to_index(traj_name):
match = re.match(r"traj(\d+)", traj_name)
if match:
return int(match.group(1))
else:
raise ValueError(f"Invalid trajectory name: {traj_name}")
def safe_divide(numerator, denominator):
return round((numerator / denominator) * 100, 2) if denominator > 0 else 0
def compute_metrics_for_each_type(results_folder, task_type_folder_list, human_traj_folder, max_step=24):
max_step_exceeded, success, failure, errors, traj_lengths, no_option_match, option_out_of_range, api_crash = [], [], [], [], [], [], [], []
interaction_success_count, interaction_total_count = 0, 0
spls = []
total_goal_condition_success = 0
compute_spl = True
for episode_folder in task_type_folder_list:
if os.path.exists(f"{results_folder}/{episode_folder}/traj.json"):
traj_list = load_json(f"{results_folder}/{episode_folder}/traj.json")
else:
traj_list = aggregate_json_files(f"{results_folder}/{episode_folder}")
store_json(traj_list, f"{results_folder}/{episode_folder}/traj.json")
if os.path.exists(f"{human_traj_folder}/{episode_folder}/traj.json"):
optimal_traj = load_json(f"{human_traj_folder}/{episode_folder}/traj.json")
else:
compute_spl = False
traj_lengths.append(len(traj_list))
done_status = traj_list[-1]["done_after_action"]
final_traj = traj_list[-1]
if done_status == 0 and len(traj_list) >= max_step and final_traj["action_choice"] not in [-1, -2, None]: # 超出一定的步长
max_step_exceeded.append(episode_folder)
if final_traj["action_choice"] == -1 or ("action_error" in final_traj and final_traj["action_error"] == "no option match"):
no_option_match.append(episode_folder)
elif final_traj["action_choice"] == -2 or ("action_error" in final_traj and final_traj["action_error"] == "option out of range"):
option_out_of_range.append(episode_folder)
elif final_traj["action_choice"] == None or ("action_error" in final_traj and final_traj["action_error"] == "api_crash"):
api_crash.append(episode_folder)
if done_status == 1:
success.append(episode_folder)
elif done_status == -1:
failure.append(episode_folder)
else:
errors.append(episode_folder)
# Compute SPL
if compute_spl:
S_i = 1 if done_status == 1 else 0
L_i = len(optimal_traj)
P_i = len(traj_list)
denominator = max(L_i, P_i)
spl_i = S_i * (L_i / denominator) if denominator > 0 else 0
spls.append(spl_i)
else:
spls = [0] * len(traj_lengths)
# calculate_goal_conditioned_success
predicates = load_json(f"{results_folder}/{episode_folder}/task.json")["scene"]["task_instance"]["predicates"]
if len(predicates) == 1:
final_predicates_done = [done_status]
else:
final_predicates_done = traj_list[-1]["predicates_done"]
goal_conditioned_success = calculate_goal_conditioned_success(final_predicates_done)
total_goal_condition_success += goal_conditioned_success
interaction_traj = [step for step in traj_list if step.get("feedback")]
interaction_total_count += len(interaction_traj)
interaction_success_count += sum(1 for step in interaction_traj if step["feedback"] != "failed")
total_episodes = len(success) + len(failure) + len(errors)
# assert len(errors) == len(max_step_exceeded) + len(no_option_match) + len(option_out_of_range) + len(api_crash)
accuracy = safe_divide(len(success), total_episodes)
max_exceed_rate = safe_divide(len(max_step_exceeded), total_episodes)
fail_rate = safe_divide(len(failure), total_episodes)
no_option_match_rate = safe_divide(len(no_option_match), total_episodes)
option_out_of_range_rate = safe_divide(len(option_out_of_range), total_episodes)
api_crash_rate = safe_divide(len(api_crash), total_episodes)
avg_traj_length = safe_divide(sum(traj_lengths), total_episodes)
avg_goal_condition_success = safe_divide(total_goal_condition_success, total_episodes)
interaction_accuracy = safe_divide(interaction_success_count, interaction_total_count)
average_spl = safe_divide(sum(spls), total_episodes)
return {
"accuracy": accuracy,
"max_step_exceed_rate": max_exceed_rate,
"fail_rate": fail_rate,
"no_option_match_rate": no_option_match_rate,
"option_out_of_range_rate": option_out_of_range_rate,
"api_crash_rate": api_crash_rate,
"average_trajectory_length": round(avg_traj_length, 2),
"average_spl": average_spl,
"total_episodes": total_episodes,
"success_count": len(success),
"failure_count": len(failure),
"max_step_exceeded_count": len(max_step_exceeded),
"interaction_accuracy": interaction_accuracy,
"total_interactions": interaction_total_count,
"interaction_rate": safe_divide(interaction_total_count, total_episodes),
"successful_interactions": interaction_success_count,
"avg_goal_condition_success": avg_goal_condition_success,
"success": success,
"failure": failure,
"max_exceed": max_step_exceeded
}
def compute_metrics_for_all_types(total_result_folder, model_name, human_traj_folder, max_step=24):
total_metrics = {
"model_name": model_name,
"accuracy": 0.0,
"max_step_exceed_rate": 0.0,
"fail_rate": 0.0,
"no_option_match_rate": 0.0,
"option_out_of_range_rate": 0.0,
"api_crash_rate": 0.0,
"average_trajectory_length": 0.0,
"average_spl": 0.0,
"total_episodes": 0,
"success_count": 0,
"failure_count": 0,
"max_step_exceeded_count": 0,
"interaction_accuracy": 0.0,
"total_interactions": 0,
"successful_interactions": 0,
"avg_goal_condition_success": 0.0
}
type_metrics = []
task_type_folder_dict = {}
for episode_folder in list_folders(total_result_folder):
index = str(traj_to_index(episode_folder))
json_path = index2json[index]
task_type = json_path.split("/")[0]
if task_type in task_type_folder_dict:
task_type_folder_dict[task_type].append(episode_folder)
else:
task_type_folder_dict[task_type] = [episode_folder]
for task_type in task_type_folder_dict:
task_type_folder_list = task_type_folder_dict[task_type]
metrics = compute_metrics_for_each_type(total_result_folder, task_type_folder_list, human_traj_folder, max_step)
type_metrics.append({
"model_name": model_name,
"task_type": task_type,
**{k: v for k, v in metrics.items() if k not in ["success", "failure", "max_exceed"]},
"success": metrics["success"],
"failure": metrics["failure"],
"max_exceed": metrics["max_exceed"]
})
total_metrics["accuracy"] += metrics["accuracy"] * metrics["total_episodes"]
total_metrics["avg_goal_condition_success"] += metrics["avg_goal_condition_success"] * metrics["total_episodes"]
total_metrics["max_step_exceed_rate"] += metrics["max_step_exceed_rate"] * metrics["total_episodes"]
total_metrics["fail_rate"] += metrics["fail_rate"] * metrics["total_episodes"]
total_metrics["no_option_match_rate"] += metrics["no_option_match_rate"] * metrics["total_episodes"]
total_metrics["option_out_of_range_rate"] += metrics["option_out_of_range_rate"] * metrics["total_episodes"]
total_metrics["api_crash_rate"] += metrics["api_crash_rate"] * metrics["total_episodes"]
total_metrics["average_trajectory_length"] += metrics["average_trajectory_length"] * metrics["total_episodes"]
total_metrics["average_spl"] += metrics["average_spl"] * metrics["total_episodes"]
total_metrics["total_episodes"] += metrics["total_episodes"]
total_metrics["success_count"] += metrics["success_count"]
total_metrics["failure_count"] += metrics["failure_count"]
total_metrics["max_step_exceeded_count"] += metrics["max_step_exceeded_count"]
total_metrics["interaction_accuracy"] += metrics["interaction_accuracy"] * metrics["total_episodes"]
total_metrics["total_interactions"] += metrics["total_interactions"]
total_metrics["successful_interactions"] += metrics["successful_interactions"]
if total_metrics["total_episodes"] > 0:
for key in ["accuracy", "avg_goal_condition_success", "max_step_exceed_rate", "fail_rate", "no_option_match_rate", "option_out_of_range_rate", "api_crash_rate", "average_trajectory_length", "interaction_accuracy", "average_spl"]:
total_metrics[key] /= total_metrics["total_episodes"]
total_metrics["interaction_rate"] = safe_divide(total_metrics["total_interactions"], total_metrics["total_episodes"])
return total_metrics, type_metrics
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--result_folder", type=str)
parser.add_argument("--model_name", type=str, default="")
args = parser.parse_args()
model_name = args.model_name
total_result_folder = args.result_folder
human_traj_folder = ""
total_metrics, type_metrics = compute_metrics_for_all_types(total_result_folder, model_name, human_traj_folder)
# store the result to results_folder:
store_json(total_metrics, f"{total_result_folder}/total_metrics.json")
store_json(type_metrics, f"{total_result_folder}/type_metrics.json")