forked from adriaciurana/DragGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradio_app.py
927 lines (757 loc) · 36.6 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
from functools import partial
from pathlib import Path
from tempfile import NamedTemporaryFile
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from drag_gan.drag_gan import DragGAN
from drag_gan.generators import BaseGenerator, StyleGANv2Generator
from drag_gan.utils import on_change_single_global_state
def set_generator_parameters(global_state):
global_state["model"].generator.params = global_state["generator_params"]
def get_model(global_state):
drag_gan: DragGAN = global_state["model"]
set_generator_parameters(global_state)
return drag_gan
def generate_from_seed(drag_gan: DragGAN, seed: int):
trainable_latent = drag_gan.get_latent_from_seed(int(seed))
image_raw = drag_gan.generate(trainable_latent)
return trainable_latent, image_raw
def init_drag_gan(generator: BaseGenerator, seed: int):
drag_gan = DragGAN(generator)
trainable_latent, image_orig = generate_from_seed(drag_gan, seed)
return drag_gan, trainable_latent, image_orig
def init_drag_gan_from_path_or_url(path_or_url, global_state, seed, model_value):
drag_gan: DragGAN = global_state["model"]
drag_gan.generator = DragGAN.REGISTERED_GENERATORS[model_value].load_from_path(path_or_url)
trainable_latent, image_raw = generate_from_seed(drag_gan, seed)
create_images(image_raw, global_state)
global_state["temporal_params"] = {}
global_state["model"] = drag_gan
set_generator_parameters(global_state)
global_state["temporal_params"]["trainable_latent"] = trainable_latent
# Restart draw
return global_state, image_raw, global_state["draws"]["image_with_mask"]
font = ImageFont.truetype(str(Path(__file__).parent / "misc/Roboto-Medium.ttf"), 32)
def draw_points_on_image(image, points, curr_point=None):
overlay_rgba = Image.new("RGBA", image.size, 0)
overlay_draw = ImageDraw.Draw(overlay_rgba)
for point_key, point in points.items():
if curr_point is not None and curr_point == point_key:
p_color = (255, 0, 0)
t_color = (0, 0, 255)
else:
p_color = (255, 0, 0, 35)
t_color = (0, 0, 255, 35)
rad_draw = int(image.size[0] * 0.02)
p_start = point.get("start_temp", point["start"])
p_target = point["target"]
if p_start is not None and p_target is not None:
p_draw = int(p_start[0]), int(p_start[1])
t_draw = int(p_target[0]), int(p_target[1])
overlay_draw.line(
(p_draw[0], p_draw[1], t_draw[0], t_draw[1]),
fill=(255, 255, 0),
width=2,
)
if p_start is not None:
p_draw = int(p_start[0]), int(p_start[1])
overlay_draw.ellipse(
(
p_draw[0] - rad_draw,
p_draw[1] - rad_draw,
p_draw[0] + rad_draw,
p_draw[1] + rad_draw,
),
fill=p_color,
)
if curr_point is not None and curr_point == point_key:
overlay_draw.text(p_draw, "p", font=font, align="center", fill=(0, 0, 0))
if p_target is not None:
t_draw = int(p_target[0]), int(p_target[1])
overlay_draw.ellipse(
(
t_draw[0] - rad_draw,
t_draw[1] - rad_draw,
t_draw[0] + rad_draw,
t_draw[1] + rad_draw,
),
fill=t_color,
)
if curr_point is not None and curr_point == point_key:
overlay_draw.text(t_draw, "t", font=font, align="center", fill=(0, 0, 0))
return Image.alpha_composite(image.convert("RGBA"), overlay_rgba).convert("RGB")
def draw_mask_on_image(image, mask):
im_mask = np.uint8(mask * 255)
im_mask_rgba = np.concatenate(
(
np.tile(im_mask[..., None], [1, 1, 3]),
45 * np.ones((im_mask.shape[0], im_mask.shape[1], 1), dtype=np.uint8),
),
axis=-1,
)
im_mask_rgba = Image.fromarray(im_mask_rgba).convert("RGBA")
return Image.alpha_composite(image.convert("RGBA"), im_mask_rgba).convert("RGB")
def create_images(image_raw, global_state):
global_state["images"]["image_orig"] = image_raw.copy()
global_state["images"]["image_raw"] = image_raw
global_state["draws"]["image_with_points"] = draw_points_on_image(
image_raw, global_state["points"], global_state["curr_point"]
)
global_state["images"]["image_mask"] = np.ones((image_raw.size[1], image_raw.size[0]), dtype=np.uint8)
global_state["draws"]["image_with_mask"] = draw_mask_on_image(
global_state["images"]["image_raw"], global_state["images"]["image_mask"]
)
def main(
generator: BaseGenerator,
default_seed: int = 42,
device: str = "cuda:0",
):
css = """
.image_nonselectable img {
-webkit-user-drag: none;
-ms-user-drag: none;
-moz-user-drag: none;
-o-user-drag: none;
user-drag: none;
}
"""
tutorial = """
### Pair-points
1. Create a new pair-point using the "Pair-Points" tab and the "Add point" button.
2. Once clicked, check the "List of pair-points", a new one will appear.
3. Seleccione en Type of point si desea crear "start (p)" o el "target (t)".
4. Select in Type of point if you want to create "start (p)" or the "target (t)".
5. Click on the image to create this point.
6. You can select in the "List of pair-points" and you can modify it.
7. You can remove a pair of points by clicking on Remove pair-point.
### Mask
1. Select the "Mask" tab.
2. Once selected, you will be able to draw subtractively. The default mask is the entire image that can be edited.
3. By drawing you can indicate areas that you want not to be edited.
### Run
1. Click on "Start".
2. Click on "Stop" and make the manual changes of the control pair-points that you want.
"""
about_paper = """
### Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold
> Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka, Christian Theobalt<br>
> *SIGGRAPH 2023 Conference Proceedings*
Synthesizing visual content that meets users' needs often requires flexible and precise controllability of the pose, shape, expression, and layout of the generated objects. Existing approaches gain controllability of generative adversarial networks (GANs) via manually annotated training data or a prior 3D model, which often lack flexibility, precision, and generality. In this work, we study a powerful yet much less explored way of controlling GANs, that is, to "drag" any points of the image to precisely reach target points in a user-interactive manner, as shown in Fig.1. To achieve this, we propose DragGAN, which consists of two main components: 1) a feature-based motion supervision that drives the handle point to move towards the target position, and 2) a new point tracking approach that leverages the discriminative generator features to keep localizing the position of the handle points. Through DragGAN, anyone can deform an image with precise control over where pixels go, thus manipulating the pose, shape, expression, and layout of diverse categories such as animals, cars, humans, landscapes, etc. As these manipulations are performed on the learned generative image manifold of a GAN, they tend to produce realistic outputs even for challenging scenarios such as hallucinating occluded content and deforming shapes that consistently follow the object's rigidity. Both qualitative and quantitative comparisons demonstrate the advantage of DragGAN over prior approaches in the tasks of image manipulation and point tracking. We also showcase the manipulation of real images through GAN inversion.
"""
with gr.Blocks(css=css) as app:
drag_gan, trainable_latent, image_orig = init_drag_gan(
StyleGANv2Generator.load_from_pretrained("afhqwild"), 42
) # The force of the lion!
global_state = gr.State(
{
"images": {
# image_orig
# image_raw
# image_mask
},
"draws": {
# image_with_points
# image_with_mask
},
"temporal_params": {
"trainable_latent": trainable_latent,
},
"generator_params": {},
"params": {
"motion_lr": 2e-3,
"motion_lambda": 20,
"r1_in_pixels": 3,
"r2_in_pixels": 12,
"magnitude_direction_in_pixels": 1.0,
},
"device": device,
"draw_interval": 5,
"radius_mask": 51,
"model": drag_gan,
"points": {},
"curr_point": None,
"curr_type_point": "start",
}
)
create_images(image_orig, global_state.value)
with gr.Row():
# Left column
with gr.Column(scale=0.7):
with gr.Accordion("Information"):
with gr.Tab("Tutorial"):
gr.Markdown(tutorial)
with gr.Tab("About the paper"):
gr.Markdown(about_paper)
with gr.Accordion("Network & latent"):
with gr.Row():
form_model_dropdown = gr.Dropdown(
choices=list(DragGAN.REGISTERED_GENERATORS.keys()),
label="Models",
value="StyleGANv2Generator",
)
with gr.Row():
with gr.Tab("Pretrained models"):
form_pretrained_dropdown = gr.Dropdown(
choices=list(StyleGANv2Generator.PRETRAINED_MODELS.keys()),
label="Pretrained model",
value="afhqwild",
)
with gr.Tab("Local file"):
form_model_pickle_file = gr.File(label="Pickle file")
with gr.Tab("URL"):
with gr.Row():
form_model_url = gr.Textbox(
placeholder="Url of the pickle file",
label="URL",
)
form_model_url_btn = gr.Button("Submit")
with gr.Row().style(equal_height=True):
with gr.Tab("Image seed"):
with gr.Row():
form_seed_number = gr.Number(
value=default_seed,
interactive=True,
label="Seed",
)
form_update_image_seed_btn = gr.Button("Update image")
with gr.Tab("Image projection"):
with gr.Row():
form_project_file = gr.File(label="Image project file")
form_project_iterations_number = gr.Number(
value=1_000,
label="Image projection num steps",
)
form_update_image_project_btn = gr.Button("Run projection")
form_reset_image = gr.Button("Reset image")
with gr.Row():
with gr.Tab("Generator Parameters"):
generator.get_gradio_panel(global_state)
with gr.Accordion("Tools"):
with gr.Tab("Pair-Points") as points_tab:
form_points_dropdown = gr.Dropdown(
choices=[],
value="",
interactive=True,
label="List of pair-points",
)
form_type_point_radio = gr.Radio(
["start (p)", "target (t)"],
value="start (p)",
label="Type",
)
with gr.Row():
form_add_point_btn = gr.Button("Add pair-point").style(full_width=True)
form_remove_point_btn = gr.Button("Remove pair-point").style(full_width=True)
with gr.Tab("Mask (subtractive mask)") as mask_tab:
gr.Markdown(
"""
White zone = editable by DragGAN
Transparent zone = not editable by DragGAN.
"""
)
form_reset_mask_btn = gr.Button("Reset mask").style(full_width=True)
form_radius_mask_number = gr.Number(
value=global_state.value["radius_mask"],
interactive=True,
label="Radius (pixels)",
).style(full_width=False)
with gr.Row():
with gr.Tab("Run"):
with gr.Row():
with gr.Column():
form_start_btn = gr.Button("Start").style(full_width=True)
form_stop_btn = gr.Button("Stop").style(full_width=True)
form_steps_number = gr.Number(value=0, label="Steps", interactive=False).style(
full_width=False
)
form_draw_interval_number = gr.Number(
value=global_state.value["draw_interval"],
label="Draw Interval (steps)",
interactive=True,
).style(full_width=False)
form_download_result_file = gr.File(label="Download result", visible=False).style(
full_width=True
)
with gr.Tab("Hyperparameters"):
with gr.Row():
form_lambda_number = gr.Number(
value=global_state.value["params"]["motion_lambda"],
interactive=True,
label="Lambda",
).style(full_width=True)
form_motion_lr_number = gr.Number(
value=global_state.value["params"]["motion_lr"],
interactive=True,
label="LR",
).style(full_width=True)
form_magnitude_direction_in_pixels_number = gr.Number(
value=global_state.value["params"]["magnitude_direction_in_pixels"],
interactive=True,
label=("Magnitude direction of d vector" " (pixels)"),
).style(full_width=True)
with gr.Row():
form_r1_in_pixels_number = gr.Number(
value=global_state.value["params"]["r1_in_pixels"],
interactive=True,
label="R1 (pixels)",
).style(full_width=False)
form_r2_in_pixels_number = gr.Number(
value=global_state.value["params"]["r2_in_pixels"],
interactive=True,
label="R2 (pixels)",
).style(full_width=False)
# Right column
with gr.Column():
form_image_draw = gr.Image(
global_state.value["draws"]["image_with_points"], elem_classes="image_nonselectable"
)
form_image_mask_draw = gr.Image(
global_state.value["draws"]["image_with_mask"],
visible=False,
elem_classes="image_nonselectable",
)
gr.Markdown("Credits: Adrià Ciurana Lanau | info@dreamlearning.ai")
# Network & latents tab listeners
def on_change_model(model_value, global_state):
model: DragGAN = get_model(global_state)
model.generator = model.REGISTERED_GENERATORS[model_value]()
return gr.Dropdown.update(choices=list(model.generator.PRETRAINED_MODELS.keys()))
form_model_dropdown.change(
on_change_model, inputs=[form_model_dropdown, global_state], outputs=[form_pretrained_dropdown]
)
def on_change_pretrained_dropdown(pretrained_value, global_state, seed):
model: DragGAN = get_model(global_state)
model.generator = model.generator.load_from_pretrained(pretrained_value)
trainable_latent, image_raw = generate_from_seed(model, seed)
create_images(image_raw, global_state)
# Restart draw
global_state["temporal_params"] = {"trainable_latent": trainable_latent}
return global_state, image_raw, global_state["draws"]["image_with_mask"]
form_pretrained_dropdown.change(
on_change_pretrained_dropdown,
inputs=[form_pretrained_dropdown, global_state, form_seed_number],
outputs=[global_state, form_image_draw, form_image_mask_draw],
)
def on_change_model_pickle(model_pickle_file, global_state, seed, model_value):
return init_drag_gan_from_path_or_url(model_pickle_file.name, global_state, seed, model_value)
form_model_pickle_file.change(
on_change_model_pickle,
inputs=[form_model_pickle_file, global_state, form_seed_number, form_model_dropdown],
outputs=[global_state, form_image_draw, form_image_mask_draw],
)
def on_change_model_url(url, global_state, seed, model_value):
return init_drag_gan_from_path_or_url(url, global_state, seed, model_value)
form_model_url_btn.click(
on_change_model_url,
inputs=[form_model_url, global_state, form_seed_number, form_model_dropdown],
outputs=[global_state, form_image_draw, form_image_mask_draw],
)
def on_click_run_projection(image_file, project_iterations_number, global_state):
print("Done")
print("Done")
print("Done")
print("Done")
print("Done")
drag_gan: DragGAN = get_model(global_state)
trainable_latent = drag_gan.project(
Image.open(image_file.name), num_steps=int(project_iterations_number), verbose=True
)
global_state["temporal_params"]["trainable_latent"] = trainable_latent
image_raw = drag_gan.generate(trainable_latent)
create_images(image_raw, global_state)
return global_state, global_state["draws"]["image_with_points"], global_state["draws"]["image_with_mask"]
form_update_image_project_btn.click(
on_click_run_projection,
inputs=[form_project_file, form_project_iterations_number, global_state],
outputs=[global_state, form_image_draw, form_image_mask_draw],
)
def on_change_seed(seed, global_state):
drag_gan: DragGAN = get_model(global_state)
trainable_latent, image_raw = generate_from_seed(drag_gan, int(seed))
create_images(image_raw, global_state)
# Restart draw
global_state["temporal_params"] = {"trainable_latent": trainable_latent}
return global_state, image_raw, global_state["draws"]["image_with_mask"]
form_seed_number.change(
on_change_seed,
inputs=[form_seed_number, global_state],
outputs=[global_state, form_image_draw, form_image_draw],
)
def on_click_reset_image(global_state):
global_state["images"]["image_raw"] = global_state["images"]["image_orig"].copy()
global_state["draws"]["image_with_points"] = global_state["images"]["image_orig"].copy()
return global_state, global_state["images"]["image_raw"], global_state["draws"]["image_with_mask"]
form_reset_image.click(
on_click_reset_image,
inputs=[global_state],
outputs=[global_state, form_image_draw, form_image_mask_draw],
)
# Update parameters
def on_change_update_image_seed(seed, global_state):
drag_gan: DragGAN = get_model(global_state)
trainable_latent, image_raw = generate_from_seed(drag_gan, int(seed))
create_images(image_raw, global_state)
# Restart draw
global_state["temporal_params"] = {"trainable_latent": trainable_latent}
return global_state, image_raw, global_state["draws"]["image_with_mask"]
form_update_image_seed_btn.click(
on_change_update_image_seed,
inputs=[form_seed_number, global_state],
outputs=[global_state, form_image_draw, form_image_mask_draw],
)
# Tools tab listeners
def on_change_dropdown_points(curr_point, global_state):
global_state["curr_point"] = curr_point
image_draw = draw_points_on_image(
global_state["images"]["image_raw"],
global_state["points"],
global_state["curr_point"],
)
return global_state, image_draw
form_points_dropdown.change(
on_change_dropdown_points,
inputs=[form_points_dropdown, global_state],
outputs=[global_state, form_image_draw],
)
form_type_point_radio.change(
partial(on_change_single_global_state, "curr_type_point"),
inputs=[form_type_point_radio, global_state],
outputs=[global_state],
)
# ==== Params
form_lambda_number.change(
partial(on_change_single_global_state, ["params", "motion_lambda"]),
inputs=[form_lambda_number, global_state],
outputs=[global_state],
)
def on_change_motion_lr(motion_lr, global_state):
global_state["params"]["motion_lr"] = motion_lr
return global_state
form_motion_lr_number.change(
on_change_motion_lr,
inputs=[form_motion_lr_number, global_state],
outputs=[global_state],
)
form_magnitude_direction_in_pixels_number.change(
partial(
on_change_single_global_state,
["params", "magnitude_direction_in_pixels"],
),
inputs=[form_motion_lr_number, global_state],
outputs=[global_state],
)
form_r1_in_pixels_number.change(
partial(
on_change_single_global_state,
["params", "r1_in_pixels"],
map_transform=lambda x: int(x),
),
inputs=[form_r1_in_pixels_number, global_state],
outputs=[global_state],
)
form_r2_in_pixels_number.change(
partial(
on_change_single_global_state,
["params", "r2_in_pixels"],
map_transform=lambda x: int(x),
),
inputs=[form_r2_in_pixels_number, global_state],
outputs=[global_state],
)
def on_click_start(global_state):
p_in_pixels = []
t_in_pixels = []
valid_points = []
# Prepare the points for the inference
if len(global_state["points"]) == 0:
image_draw = draw_points_on_image(
global_state["draws"]["image_with_points"],
global_state["points"],
global_state["curr_point"],
)
return global_state, 0, image_draw, gr.File.update(visible=False)
# Transform the points into torch tensors
for key_point, point in global_state["points"].items():
try:
p_start = point.get("start_temp", point["start"])
p_end = point["target"]
if p_start is None or p_end is None:
continue
except KeyError:
continue
p_in_pixels.append(p_start)
t_in_pixels.append(p_end)
valid_points.append(key_point)
p_in_pixels = torch.tensor(p_in_pixels)
t_in_pixels = torch.tensor(t_in_pixels)
r1_in_pixels = torch.tensor([global_state["params"]["r1_in_pixels"]]).float()
r2_in_pixels = torch.tensor([global_state["params"]["r2_in_pixels"]]).float()
# Mask for the paper:
# M=1 that you want to edit
# M=0 that you want to preserve
mask_in_pixels = torch.tensor(global_state["images"]["image_mask"]).float()
# Init the DragGAN
drag_gan: DragGAN = get_model(global_state)
trainable_latent = global_state["temporal_params"]["trainable_latent"]
(
p,
r1,
r2,
t,
magnitude_direction,
M,
optimizer,
p_init,
F0,
) = drag_gan.init(
trainable_latent=trainable_latent,
p_in_pixels=p_in_pixels,
r1_in_pixels=r1_in_pixels,
r2_in_pixels=r2_in_pixels,
t_in_pixels=t_in_pixels,
magnitude_direction_in_pixels=global_state["params"]["magnitude_direction_in_pixels"],
mask_in_pixels=mask_in_pixels,
motion_lr=global_state["params"]["motion_lr"],
optimizer=global_state["temporal_params"].get("optimizer", None),
)
global_state["temporal_params"]["stop"] = False
# Start to iterate
step_idx = 0
while True:
# Stop the iteration if the user press the button
if global_state["temporal_params"]["stop"]:
break
p = drag_gan.step(
optimizer=optimizer,
motion_lambda=global_state["params"]["motion_lambda"],
trainable_latent=trainable_latent,
F0=F0,
p_init=p_init,
p=p,
t=t,
r1=r1,
r1_interpolation_samples=global_state["params"]["r1_in_pixels"],
r2=r2,
r2_interpolation_samples=global_state["params"]["r2_in_pixels"],
M=M,
magnitude_direction=magnitude_direction,
)
if step_idx % global_state["draw_interval"] == 0:
# Unnormalize the p and t to create a visualization
p_in_pixels = drag_gan.norm_coord_to_pixel_coord(p)
t_in_pixels = drag_gan.norm_coord_to_pixel_coord(t)
# Move points in the global state
for key_point, p_i, t_i in zip(valid_points, p_in_pixels, t_in_pixels):
global_state["points"][key_point]["start_temp"] = p_i.tolist()
global_state["points"][key_point]["target"] = t_i.tolist()
# Generate the image
image_step_pil = drag_gan.generate(trainable_latent)
global_state["images"]["image_raw"] = image_step_pil
# Draw points on the image
# image_draw = draw_points_on_image(
# image_step_pil,
# global_state["points"],
# global_state["curr_point"],
# )
create_images(image_step_pil, global_state)
yield (
global_state,
step_idx,
global_state["draws"]["image_with_points"],
global_state["draws"]["image_with_mask"],
gr.File.update(visible=False),
)
# increate step
step_idx += 1
# Create the output result
trainable_latent = global_state["temporal_params"]["trainable_latent"]
image_result = drag_gan.generate(trainable_latent)
create_images(image_result, global_state)
fp = NamedTemporaryFile(suffix=".png", delete=False)
image_result.save(fp, "PNG")
yield (
global_state,
step_idx,
global_state["draws"]["image_with_points"],
global_state["draws"]["image_with_mask"],
gr.File.update(visible=True, value=fp.name),
)
form_start_btn.click(
on_click_start,
inputs=[global_state],
outputs=[global_state, form_steps_number, form_image_draw, form_image_mask_draw, form_download_result_file],
)
def on_click_stop(global_state):
global_state["temporal_params"]["stop"] = True
return global_state
form_stop_btn.click(on_click_stop, inputs=[global_state], outputs=[global_state])
form_draw_interval_number.change(
partial(
on_change_single_global_state,
"draw_interval",
map_transform=lambda x: int(x),
),
inputs=[form_draw_interval_number, global_state],
outputs=[global_state],
)
# Add & remove points
def on_click_add_point(global_state):
choices = list(global_state["points"].keys())
if len(choices) > 0:
max_choice = int(choices[-1])
else:
max_choice = -1
max_choice = str(max_choice + 1)
global_state["curr_point"] = max_choice
global_state["points"][max_choice] = {"start": None, "target": None}
choices = choices + [max_choice]
return (
gr.Dropdown.update(choices=choices, value=max_choice),
global_state,
)
form_add_point_btn.click(
on_click_add_point,
inputs=[global_state],
outputs=[form_points_dropdown, global_state],
)
def on_click_remove_point(global_state):
choice = global_state["curr_point"]
del global_state["points"][choice]
choices = list(global_state["points"].keys())
if len(choices) > 0:
global_state["curr_point"] = choices[0]
return (
gr.Dropdown.update(choices=choices, value=choices[0]),
global_state,
)
form_remove_point_btn.click(
on_click_remove_point,
inputs=[global_state],
outputs=[form_points_dropdown, global_state],
)
# Mask
def on_click_reset_mask(global_state):
global_state["images"]["image_mask"] = np.ones(
(
global_state["images"]["image_raw"].size[1],
global_state["images"]["image_raw"].size[0],
),
dtype=np.uint8,
)
global_state["draws"]["image_with_mask"] = draw_mask_on_image(
global_state["images"]["image_raw"], global_state["images"]["image_mask"]
)
return global_state, global_state["draws"]["image_with_mask"]
form_reset_mask_btn.click(
on_click_reset_mask,
inputs=[global_state],
outputs=[global_state, form_image_mask_draw],
)
form_radius_mask_number.change(
partial(
on_change_single_global_state,
"radius_mask",
map_transform=lambda x: int(x),
),
inputs=[form_radius_mask_number, global_state],
outputs=[global_state],
)
# Image
def on_click_points_tab(global_state):
global_state["curr_tool"] = "point"
return (
global_state,
gr.Image.update(visible=True),
gr.Image.update(visible=False),
)
points_tab.select(
on_click_points_tab,
inputs=[global_state],
outputs=[global_state, form_image_draw, form_image_mask_draw],
)
def on_click_mask_tab(global_state):
global_state["curr_tool"] = "mask"
return (
global_state,
gr.Image.update(visible=False),
gr.Image.update(visible=True),
)
mask_tab.select(
on_click_mask_tab,
inputs=[global_state],
outputs=[global_state, form_image_draw, form_image_mask_draw],
)
def on_click_image(global_state, evt: gr.SelectData):
xy = evt.index
curr_point = global_state["curr_point"]
if curr_point is None:
return global_state, global_state["images"]["image_raw"]
curr_type_point = global_state["curr_type_point"]
if curr_type_point == "start (p)":
curr_type_point = "start"
elif curr_type_point == "target (t)":
curr_type_point = "target"
global_state["points"][curr_point][curr_type_point] = xy
# Draw on image
image_draw = draw_points_on_image(
global_state["images"]["image_raw"],
global_state["points"],
global_state["curr_point"],
)
global_state["draws"]["image_with_points"] = image_draw
return global_state, image_draw
form_image_draw.select(
on_click_image,
inputs=[global_state],
outputs=[global_state, form_image_draw],
)
def on_click_mask(global_state, evt: gr.SelectData):
xy = evt.index
radius_mask = int(global_state["radius_mask"])
image_mask = np.uint8(255 * global_state["images"]["image_mask"])
image_mask = cv2.circle(image_mask, xy, radius_mask, 0, -1) > 127
global_state["images"]["image_mask"] = image_mask
image_with_mask = draw_mask_on_image(global_state["images"]["image_raw"], image_mask)
global_state["draws"]["image_with_mask"] = image_with_mask
return global_state, image_with_mask
form_image_mask_draw.select(
on_click_mask,
inputs=[global_state],
outputs=[global_state, form_image_mask_draw],
)
return app
if __name__ == "__main__":
import argparse
import os
default_network_pkl = os.environ.get("NETWORK_PKL")
if default_network_pkl is None or default_network_pkl == "":
default_network_pkl = "https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/afhqwild.pkl"
default_seed = os.environ.get("SEED")
if default_seed is None or default_seed == "":
default_seed = 42
default_device = os.environ.get("DEVICE")
if default_device is None or default_device == "":
default_device = "cuda:0"
default_device = default_device if torch.cuda.is_available() else "cpu"
parser = argparse.ArgumentParser(description="Execute DragGAN using gradio GUI.")
parser.add_argument(
"--network_pkl", type=str, default=default_network_pkl, help="Path or url of the network pkl", required=False
)
parser.add_argument("--seed", type=int, default=default_seed, help="Default seed", required=False)
parser.add_argument("--device", type=str, default=default_device, help="Device (cpu or cuda:index)", required=False)
parser.add_argument("--share", action="store_true", help="Share gradio GUI", required=False)
args = parser.parse_args()
generator = StyleGANv2Generator(
network_pkl=args.network_pkl,
)
app = main(
generator=generator,
default_seed=args.seed,
device=args.device,
)
share = args.share | bool(os.environ.get("SHARE", False))
gr.close_all()
app.queue(concurrency_count=2, max_size=20).launch(share=share, server_name="0.0.0.0")