-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathTimeMixer.py
executable file
·516 lines (432 loc) · 19.6 KB
/
TimeMixer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.Autoformer_EncDec import series_decomp
from layers.Embed import DataEmbedding_wo_pos
from layers.StandardNorm import Normalize
class DFT_series_decomp(nn.Module):
"""
Series decomposition block
"""
def __init__(self, top_k=5):
super(DFT_series_decomp, self).__init__()
self.top_k = top_k
def forward(self, x):
xf = torch.fft.rfft(x)
freq = abs(xf)
freq[0] = 0
top_k_freq, top_list = torch.topk(freq, 5)
xf[freq <= top_k_freq.min()] = 0
x_season = torch.fft.irfft(xf)
x_trend = x - x_season
return x_season, x_trend
class MultiScaleSeasonMixing(nn.Module):
"""
Bottom-up mixing season pattern
"""
def __init__(self, configs):
super(MultiScaleSeasonMixing, self).__init__()
self.down_sampling_layers = torch.nn.ModuleList(
[
nn.Sequential(
torch.nn.Linear(
configs.seq_len // (configs.down_sampling_window ** i),
configs.seq_len // (configs.down_sampling_window ** (i + 1)),
),
nn.GELU(),
torch.nn.Linear(
configs.seq_len // (configs.down_sampling_window ** (i + 1)),
configs.seq_len // (configs.down_sampling_window ** (i + 1)),
),
)
for i in range(configs.down_sampling_layers)
]
)
def forward(self, season_list):
# mixing high->low
out_high = season_list[0]
out_low = season_list[1]
out_season_list = [out_high.permute(0, 2, 1)]
for i in range(len(season_list) - 1):
out_low_res = self.down_sampling_layers[i](out_high)
out_low = out_low + out_low_res
out_high = out_low
if i + 2 <= len(season_list) - 1:
out_low = season_list[i + 2]
out_season_list.append(out_high.permute(0, 2, 1))
return out_season_list
class MultiScaleTrendMixing(nn.Module):
"""
Top-down mixing trend pattern
"""
def __init__(self, configs):
super(MultiScaleTrendMixing, self).__init__()
self.up_sampling_layers = torch.nn.ModuleList(
[
nn.Sequential(
torch.nn.Linear(
configs.seq_len // (configs.down_sampling_window ** (i + 1)),
configs.seq_len // (configs.down_sampling_window ** i),
),
nn.GELU(),
torch.nn.Linear(
configs.seq_len // (configs.down_sampling_window ** i),
configs.seq_len // (configs.down_sampling_window ** i),
),
)
for i in reversed(range(configs.down_sampling_layers))
])
def forward(self, trend_list):
# mixing low->high
trend_list_reverse = trend_list.copy()
trend_list_reverse.reverse()
out_low = trend_list_reverse[0]
out_high = trend_list_reverse[1]
out_trend_list = [out_low.permute(0, 2, 1)]
for i in range(len(trend_list_reverse) - 1):
out_high_res = self.up_sampling_layers[i](out_low)
out_high = out_high + out_high_res
out_low = out_high
if i + 2 <= len(trend_list_reverse) - 1:
out_high = trend_list_reverse[i + 2]
out_trend_list.append(out_low.permute(0, 2, 1))
out_trend_list.reverse()
return out_trend_list
class PastDecomposableMixing(nn.Module):
def __init__(self, configs):
super(PastDecomposableMixing, self).__init__()
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.down_sampling_window = configs.down_sampling_window
self.layer_norm = nn.LayerNorm(configs.d_model)
self.dropout = nn.Dropout(configs.dropout)
self.channel_independence = configs.channel_independence
if configs.decomp_method == 'moving_avg':
self.decompsition = series_decomp(configs.moving_avg)
elif configs.decomp_method == "dft_decomp":
self.decompsition = DFT_series_decomp(configs.top_k)
else:
raise ValueError('decompsition is error')
if not configs.channel_independence:
self.cross_layer = nn.Sequential(
nn.Linear(in_features=configs.d_model, out_features=configs.d_ff),
nn.GELU(),
nn.Linear(in_features=configs.d_ff, out_features=configs.d_model),
)
# Mixing season
self.mixing_multi_scale_season = MultiScaleSeasonMixing(configs)
# Mxing trend
self.mixing_multi_scale_trend = MultiScaleTrendMixing(configs)
self.out_cross_layer = nn.Sequential(
nn.Linear(in_features=configs.d_model, out_features=configs.d_ff),
nn.GELU(),
nn.Linear(in_features=configs.d_ff, out_features=configs.d_model),
)
def forward(self, x_list):
length_list = []
for x in x_list:
_, T, _ = x.size()
length_list.append(T)
# Decompose to obtain the season and trend
season_list = []
trend_list = []
for x in x_list:
season, trend = self.decompsition(x)
if not self.channel_independence:
season = self.cross_layer(season)
trend = self.cross_layer(trend)
season_list.append(season.permute(0, 2, 1))
trend_list.append(trend.permute(0, 2, 1))
# bottom-up season mixing
out_season_list = self.mixing_multi_scale_season(season_list)
# top-down trend mixing
out_trend_list = self.mixing_multi_scale_trend(trend_list)
out_list = []
for ori, out_season, out_trend, length in zip(x_list, out_season_list, out_trend_list,
length_list):
out = out_season + out_trend
if self.channel_independence:
out = ori + self.out_cross_layer(out)
out_list.append(out[:, :length, :])
return out_list
class Model(nn.Module):
def __init__(self, configs):
super(Model, self).__init__()
self.configs = configs
self.task_name = configs.task_name
self.seq_len = configs.seq_len
self.label_len = configs.label_len
self.pred_len = configs.pred_len
self.down_sampling_window = configs.down_sampling_window
self.channel_independence = configs.channel_independence
self.pdm_blocks = nn.ModuleList([PastDecomposableMixing(configs)
for _ in range(configs.e_layers)])
self.preprocess = series_decomp(configs.moving_avg)
self.enc_in = configs.enc_in
if self.channel_independence:
self.enc_embedding = DataEmbedding_wo_pos(1, configs.d_model, configs.embed, configs.freq,
configs.dropout)
else:
self.enc_embedding = DataEmbedding_wo_pos(configs.enc_in, configs.d_model, configs.embed, configs.freq,
configs.dropout)
self.layer = configs.e_layers
self.normalize_layers = torch.nn.ModuleList(
[
Normalize(self.configs.enc_in, affine=True, non_norm=True if configs.use_norm == 0 else False)
for i in range(configs.down_sampling_layers + 1)
]
)
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
self.predict_layers = torch.nn.ModuleList(
[
torch.nn.Linear(
configs.seq_len // (configs.down_sampling_window ** i),
configs.pred_len,
)
for i in range(configs.down_sampling_layers + 1)
]
)
if self.channel_independence:
self.projection_layer = nn.Linear(
configs.d_model, 1, bias=True)
else:
self.projection_layer = nn.Linear(
configs.d_model, configs.c_out, bias=True)
self.out_res_layers = torch.nn.ModuleList([
torch.nn.Linear(
configs.seq_len // (configs.down_sampling_window ** i),
configs.seq_len // (configs.down_sampling_window ** i),
)
for i in range(configs.down_sampling_layers + 1)
])
self.regression_layers = torch.nn.ModuleList(
[
torch.nn.Linear(
configs.seq_len // (configs.down_sampling_window ** i),
configs.pred_len,
)
for i in range(configs.down_sampling_layers + 1)
]
)
if self.task_name == 'imputation' or self.task_name == 'anomaly_detection':
if self.channel_independence:
self.projection_layer = nn.Linear(
configs.d_model, 1, bias=True)
else:
self.projection_layer = nn.Linear(
configs.d_model, configs.c_out, bias=True)
if self.task_name == 'classification':
self.act = F.gelu
self.dropout = nn.Dropout(configs.dropout)
self.projection = nn.Linear(
configs.d_model * configs.seq_len, configs.num_class)
def out_projection(self, dec_out, i, out_res):
dec_out = self.projection_layer(dec_out)
out_res = out_res.permute(0, 2, 1)
out_res = self.out_res_layers[i](out_res)
out_res = self.regression_layers[i](out_res).permute(0, 2, 1)
dec_out = dec_out + out_res
return dec_out
def pre_enc(self, x_list):
if self.channel_independence:
return (x_list, None)
else:
out1_list = []
out2_list = []
for x in x_list:
x_1, x_2 = self.preprocess(x)
out1_list.append(x_1)
out2_list.append(x_2)
return (out1_list, out2_list)
def __multi_scale_process_inputs(self, x_enc, x_mark_enc):
if self.configs.down_sampling_method == 'max':
down_pool = torch.nn.MaxPool1d(self.configs.down_sampling_window, return_indices=False)
elif self.configs.down_sampling_method == 'avg':
down_pool = torch.nn.AvgPool1d(self.configs.down_sampling_window)
elif self.configs.down_sampling_method == 'conv':
padding = 1 if torch.__version__ >= '1.5.0' else 2
down_pool = nn.Conv1d(in_channels=self.configs.enc_in, out_channels=self.configs.enc_in,
kernel_size=3, padding=padding,
stride=self.configs.down_sampling_window,
padding_mode='circular',
bias=False)
else:
return x_enc, x_mark_enc
# B,T,C -> B,C,T
x_enc = x_enc.permute(0, 2, 1)
x_enc_ori = x_enc
x_mark_enc_mark_ori = x_mark_enc
x_enc_sampling_list = []
x_mark_sampling_list = []
x_enc_sampling_list.append(x_enc.permute(0, 2, 1))
x_mark_sampling_list.append(x_mark_enc)
for i in range(self.configs.down_sampling_layers):
x_enc_sampling = down_pool(x_enc_ori)
x_enc_sampling_list.append(x_enc_sampling.permute(0, 2, 1))
x_enc_ori = x_enc_sampling
if x_mark_enc is not None:
x_mark_sampling_list.append(x_mark_enc_mark_ori[:, ::self.configs.down_sampling_window, :])
x_mark_enc_mark_ori = x_mark_enc_mark_ori[:, ::self.configs.down_sampling_window, :]
x_enc = x_enc_sampling_list
x_mark_enc = x_mark_sampling_list if x_mark_enc is not None else None
return x_enc, x_mark_enc
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
x_enc, x_mark_enc = self.__multi_scale_process_inputs(x_enc, x_mark_enc)
x_list = []
x_mark_list = []
if x_mark_enc is not None:
for i, x, x_mark in zip(range(len(x_enc)), x_enc, x_mark_enc):
B, T, N = x.size()
x = self.normalize_layers[i](x, 'norm')
if self.channel_independence:
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
x_list.append(x)
x_mark = x_mark.repeat(N, 1, 1)
x_mark_list.append(x_mark)
else:
x_list.append(x)
x_mark_list.append(x_mark)
else:
for i, x in zip(range(len(x_enc)), x_enc, ):
B, T, N = x.size()
x = self.normalize_layers[i](x, 'norm')
if self.channel_independence:
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
x_list.append(x)
# embedding
enc_out_list = []
x_list = self.pre_enc(x_list)
if x_mark_enc is not None:
for i, x, x_mark in zip(range(len(x_list[0])), x_list[0], x_mark_list):
enc_out = self.enc_embedding(x, x_mark) # [B,T,C]
enc_out_list.append(enc_out)
else:
for i, x in zip(range(len(x_list[0])), x_list[0]):
enc_out = self.enc_embedding(x, None) # [B,T,C]
enc_out_list.append(enc_out)
# Past Decomposable Mixing as encoder for past
for i in range(self.layer):
enc_out_list = self.pdm_blocks[i](enc_out_list)
# Future Multipredictor Mixing as decoder for future
dec_out_list = self.future_multi_mixing(B, enc_out_list, x_list)
dec_out = torch.stack(dec_out_list, dim=-1).sum(-1)
dec_out = self.normalize_layers[0](dec_out, 'denorm')
return dec_out
def future_multi_mixing(self, B, enc_out_list, x_list):
dec_out_list = []
if self.channel_independence:
x_list = x_list[0]
for i, enc_out in zip(range(len(x_list)), enc_out_list):
dec_out = self.predict_layers[i](enc_out.permute(0, 2, 1)).permute(
0, 2, 1) # align temporal dimension
dec_out = self.projection_layer(dec_out)
dec_out = dec_out.reshape(B, self.configs.c_out, self.pred_len).permute(0, 2, 1).contiguous()
dec_out_list.append(dec_out)
else:
for i, enc_out, out_res in zip(range(len(x_list[0])), enc_out_list, x_list[1]):
dec_out = self.predict_layers[i](enc_out.permute(0, 2, 1)).permute(
0, 2, 1) # align temporal dimension
dec_out = self.out_projection(dec_out, i, out_res)
dec_out_list.append(dec_out)
return dec_out_list
def classification(self, x_enc, x_mark_enc):
x_enc, _ = self.__multi_scale_process_inputs(x_enc, None)
x_list = x_enc
# embedding
enc_out_list = []
for x in x_list:
enc_out = self.enc_embedding(x, None) # [B,T,C]
enc_out_list.append(enc_out)
# MultiScale-CrissCrossAttention as encoder for past
for i in range(self.layer):
enc_out_list = self.pdm_blocks[i](enc_out_list)
enc_out = enc_out_list[0]
# Output
# the output transformer encoder/decoder embeddings don't include non-linearity
output = self.act(enc_out)
output = self.dropout(output)
# zero-out padding embeddings
output = output * x_mark_enc.unsqueeze(-1)
# (batch_size, seq_length * d_model)
output = output.reshape(output.shape[0], -1)
output = self.projection(output) # (batch_size, num_classes)
return output
def anomaly_detection(self, x_enc):
B, T, N = x_enc.size()
x_enc, _ = self.__multi_scale_process_inputs(x_enc, None)
x_list = []
for i, x in zip(range(len(x_enc)), x_enc, ):
B, T, N = x.size()
x = self.normalize_layers[i](x, 'norm')
if self.channel_independence:
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
x_list.append(x)
# embedding
enc_out_list = []
for x in x_list:
enc_out = self.enc_embedding(x, None) # [B,T,C]
enc_out_list.append(enc_out)
# MultiScale-CrissCrossAttention as encoder for past
for i in range(self.layer):
enc_out_list = self.pdm_blocks[i](enc_out_list)
dec_out = self.projection_layer(enc_out_list[0])
dec_out = dec_out.reshape(B, self.configs.c_out, -1).permute(0, 2, 1).contiguous()
dec_out = self.normalize_layers[0](dec_out, 'denorm')
return dec_out
def imputation(self, x_enc, x_mark_enc, mask):
means = torch.sum(x_enc, dim=1) / torch.sum(mask == 1, dim=1)
means = means.unsqueeze(1).detach()
x_enc = x_enc - means
x_enc = x_enc.masked_fill(mask == 0, 0)
stdev = torch.sqrt(torch.sum(x_enc * x_enc, dim=1) /
torch.sum(mask == 1, dim=1) + 1e-5)
stdev = stdev.unsqueeze(1).detach()
x_enc /= stdev
B, T, N = x_enc.size()
x_enc, x_mark_enc = self.__multi_scale_process_inputs(x_enc, x_mark_enc)
x_list = []
x_mark_list = []
if x_mark_enc is not None:
for i, x, x_mark in zip(range(len(x_enc)), x_enc, x_mark_enc):
B, T, N = x.size()
if self.channel_independence:
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
x_list.append(x)
x_mark = x_mark.repeat(N, 1, 1)
x_mark_list.append(x_mark)
else:
for i, x in zip(range(len(x_enc)), x_enc, ):
B, T, N = x.size()
if self.channel_independence:
x = x.permute(0, 2, 1).contiguous().reshape(B * N, T, 1)
x_list.append(x)
# embedding
enc_out_list = []
for x in x_list:
enc_out = self.enc_embedding(x, None) # [B,T,C]
enc_out_list.append(enc_out)
# MultiScale-CrissCrossAttention as encoder for past
for i in range(self.layer):
enc_out_list = self.pdm_blocks[i](enc_out_list)
dec_out = self.projection_layer(enc_out_list[0])
dec_out = dec_out.reshape(B, self.configs.c_out, -1).permute(0, 2, 1).contiguous()
dec_out = dec_out * \
(stdev[:, 0, :].unsqueeze(1).repeat(1, self.seq_len, 1))
dec_out = dec_out + \
(means[:, 0, :].unsqueeze(1).repeat(1, self.seq_len, 1))
return dec_out
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out
if self.task_name == 'imputation':
dec_out = self.imputation(x_enc, x_mark_enc, mask)
return dec_out # [B, L, D]
if self.task_name == 'anomaly_detection':
dec_out = self.anomaly_detection(x_enc)
return dec_out # [B, L, D]
if self.task_name == 'classification':
dec_out = self.classification(x_enc, x_mark_enc)
return dec_out # [B, N]
else:
raise ValueError('Other tasks implemented yet')