-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathPAttn.py
62 lines (55 loc) · 2.44 KB
/
PAttn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn as nn
from layers.Transformer_EncDec import Encoder, EncoderLayer
from layers.SelfAttention_Family import FullAttention, AttentionLayer
from einops import rearrange
class Model(nn.Module):
"""
Paper link: https://arxiv.org/abs/2406.16964
"""
def __init__(self, configs, patch_len=16, stride=8):
super().__init__()
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.patch_size = patch_len
self.stride = stride
self.d_model = configs.d_model
self.patch_num = (configs.seq_len - self.patch_size) // self.stride + 2
self.padding_patch_layer = nn.ReplicationPad1d((0, self.stride))
self.in_layer = nn.Linear(self.patch_size, self.d_model)
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer(
FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=False), configs.d_model, configs.n_heads),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation
) for l in range(1)
],
norm_layer=nn.LayerNorm(configs.d_model)
)
self.out_layer = nn.Linear(self.d_model * self.patch_num, configs.pred_len)
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(
torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
B, _, C = x_enc.shape
x_enc = x_enc.permute(0, 2, 1)
x_enc = self.padding_patch_layer(x_enc)
x_enc = x_enc.unfold(dimension=-1, size=self.patch_size, step=self.stride)
enc_out = self.in_layer(x_enc)
enc_out = rearrange(enc_out, 'b c m l -> (b c) m l')
dec_out, _ = self.encoder(enc_out)
dec_out = rearrange(dec_out, '(b c) m l -> b c (m l)' , b=B , c=C)
dec_out = self.out_layer(dec_out)
dec_out = dec_out.permute(0, 2, 1)
dec_out = dec_out * \
(stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
dec_out = dec_out + \
(means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
return dec_out