-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathstrat_blenderbot_small.py
162 lines (137 loc) · 5.99 KB
/
strat_blenderbot_small.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# coding=utf-8
# copied from bart
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.model_utils import BaseModel
from transformers.generation_utils import top_k_top_p_filtering
from transformers.models.blenderbot_small import (BlenderbotSmallConfig, BlenderbotSmallForConditionalGeneration,)
from transformers.modeling_outputs import (BaseModelOutput, Seq2SeqModelOutput, Seq2SeqLMOutput,)
from .PARAMS import SAMPLE, TEMPERATURE
class Model(BaseModel, BlenderbotSmallForConditionalGeneration):
def __init__(self, config: BlenderbotSmallConfig):
super().__init__(config)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
encoder_outputs=None,
past_key_values=None,
labels=None,
use_cache=None,
return_dict=None,
validation=False,
**kwargs
):
assert self.toker is not None
encoded_info = kwargs
assert (self.training or validation) == (labels is not None)
if validation:
labels[:, 0] = -100
use_cache = use_cache if use_cache is not None else self.config.use_cache
if not self.training and not validation: # inference
use_cache = True
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
use_cache=use_cache,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
if validation:
lm_logits = lm_logits[..., :self.toker.vocab_size].contiguous()
masked_lm_loss = None
if labels is not None:
loss = F.cross_entropy(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1), reduction='none')
loss = loss.view(labels.size(0), labels.size(1))
label_size = torch.sum(labels.ne(-100), dim=1).type_as(loss)
masked_lm_loss = torch.sum(loss) / torch.sum(label_size)
ppl_value = torch.exp(torch.mean(torch.sum(loss, dim=1).float() / label_size.float()))
if not self.training and not validation: # inference
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
elif self.training: # training
assert not validation
res = {'all': masked_lm_loss, 'ppl': ppl_value, }
return res
else: # validation
assert not self.training
return loss, label_size
def predict_strategy(self, logits, encoded_info):
assert not self.training
strat_id = encoded_info.get('strat_id', None)
logits = logits[:, 0, -8:]
if strat_id is not None:
pred = strat_id
else:
if SAMPLE:
filtered_logits = top_k_top_p_filtering(logits / TEMPERATURE, top_p=0.9)
pred = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1).squeeze(-1)
else:
pred = torch.argmax(logits, dim=-1)
pred_top1 = torch.topk(logits, k=1, dim=-1)[1]
pred_top3 = torch.topk(logits, k=3, dim=-1)[1]
encoded_info.update({
'pred_strat_id': pred,
'pred_strat_id_top1': pred_top1,
'pred_strat_id_top3': pred_top3,
'pred_strat_id_dist': F.softmax(logits, dim=-1)
})
@torch.no_grad()
def generate(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
return_dict=None,
**kwargs
):
assert not self.training
assert self.toker is not None
encoded_info = kwargs
assert decoder_input_ids.size(1) == 1
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.model.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=return_dict,
)
decoder_outputs = self.model.decoder(
input_ids=decoder_input_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs.last_hidden_state) + self.final_logits_bias
self.predict_strategy(lm_logits, encoded_info)
decoder_input_ids = torch.cat([decoder_input_ids, encoded_info['pred_strat_id'][..., None] + len(self.toker) - 8], dim=-1)
assert 'max_length' in kwargs
kwargs['max_length'] = kwargs['max_length'] + decoder_input_ids.size(1)
kwargs['use_cache'] = True
if len(self.toker) > self.toker.vocab_size:
bad_words_ids = [[i] for i in range(self.toker.vocab_size, len(self.toker))]
kwargs['bad_words_ids'] = bad_words_ids
generations = super().generate(
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
**kwargs
)
return encoded_info, generations[:, decoder_input_ids.size(1):]