-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloop_model_options.py
170 lines (145 loc) · 12.3 KB
/
loop_model_options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import os
import sys
import shlex
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def has_field(opt, argname):
""" checks whether opt contains the field "argname" and it is not None.
the Argparse namespace opject leaves a field as None if it's not specified in the command args
and there is no default value."""
return (hasattr(opt, argname) and getattr(opt, argname) is not None)
class LoopSeqOptions:
def __init__(self):
#
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
self.parser.add_argument('--architecture', type=str, default='lstm', choices=['lstm', 'transformer', 'lstm+transformer', 'pointnet+transformer'], help=
"choose the model architecture to use. default: lstm; options are [lstm, transformer, lstm+transformer]. "
"If `lstm` is chosen, then the options enc_lstm_hidden_size, enc_bidirectional, lstm_hidden_size, lstm_n_layers are applicable."
"If `transformer` is chosen, then the options "
"enc_transformer_n_layers, enc_transformer_n_heads, enc_transformer_ffwd_size, "
"dec_transformer_n_layers, dec_transformer_n_heads, dec_transformer_ffwd_size "
"are available. "
"If `lstm+transformer` is chosen, then the enc_transformer_* options"
"are available, plus enc_lstm_hidden_size, and lstm_*. "
"The pointnet+transformer architecture is a pointnet encoder + a transformer decoder; "
"all dec_transformer* arguments apply, in addition to pointnet_hidden_size"
)
# fourier map options
self.parser.add_argument('--fourier_map_size', type=int, default=None, help="fourier feature map size before projecting to transformer d model")
self.parser.add_argument('--fourier_map_sigma', type=float, default=4.0, help="fourier feature map sigma value")
# LSTM options
self.parser.add_argument('--enc_lstm_hidden_size', type=int, default=64, help='encoder lstm hidden layer size')
# self.parser.add_argument('--enc_lstm_n_layers', type=int, default=1, help='WARNING not used!!! encoder lstm number of layers stacked on each other')
self.parser.add_argument('--enc_bidirectional', action='store_true', help='whether the encoder LSTM is bidirectional')
self.parser.add_argument('--lstm_hidden_size', type=int, default=64, help='decoder lstm hidden layer size')
self.parser.add_argument('--lstm_n_layers', type=int, default=1, help='number of lstm layers to stack')
# PointNet options, for architecture "pointnet+transformer"
self.parser.add_argument('--pointnet_hidden_size', type=int, default=128, help="hidden feature size for pointnet encoder for --architecture pointnet+transformer and others that use a pointnet")
# Transformer options
# I didn't have this option in the first version (v0)
# so the default is 0 for the runs that don't have this in their command args.
# Version changelog:
# - v1 bypasses the extra CLS token and directly predicts the
# start-embedding from the latent.
# additionally, the key_padding_mask is no longer wrong: the first
# timestep is now not considered padding anymore.
self.parser.add_argument('--transformer_arch_version', type=int, default=0, help="versioning for the transformer architecture. ")
self.parser.add_argument('--enc_transformer_d_model', type=int, default=128, help="embedding dim size used internally in the transformers")
self.parser.add_argument('--enc_transformer_n_layers', type=int, default=4, help="number of layers of transformer decoder blocks")
self.parser.add_argument('--enc_transformer_n_heads', type=int, default=1, help="number of attention heads per decoder block")
self.parser.add_argument('--enc_transformer_ffwd_size', type=int, default=256, help="hidden size of the internal feed-forward network in each transformer encoder block")
self.parser.add_argument('--dec_transformer_d_model', type=int, default=128, help="embedding dim size used internally in the transformers")
self.parser.add_argument('--dec_transformer_n_layers', type=int, default=4, help="number of layers of transformer decoder blocks")
self.parser.add_argument('--dec_transformer_n_heads', type=int, default=1, help="number of attention heads per decoder block")
self.parser.add_argument('--dec_transformer_ffwd_size', type=int, default=256, help="hidden size of the internal feed-forward network in each transformer decoder block")
self.parser.add_argument('--dec_transformer_dropout', type=float, default=0, help="dropout rate on the decoder side")
# VAE training options
self.parser.add_argument('--enc_kl_min', type=float, default=0.05, help='minimum KL loss, to prevent overemphasizing optimizing the KL div during training')
self.parser.add_argument('--enc_kl_weight', type=float, default=0.5, help='weight applied to KL divergence loss; also to control how important it is to enforce the latent distribution')
self.parser.add_argument('--enc_kl_anneal_cycle', type=int, default=100, help='cycle length (in number of iterations, not epochs) for the cyclic KL annealing rule. If (-1) then no KL annealing is done (useful for resuming from a previous epoch at an already-annealed KL stage.')
self.parser.add_argument('--enc_kl_anneal_formula', type=str, default='ramp', choices=['ramp', 'cyclic'], help='type of KL annealing formula. Use either "ramp" or "cyclic".')
self.parser.add_argument('--latent_size', type=int, default=8, help='number of dimensions for latent vectors')
self.parser.add_argument('--enc_fc_hidden_sizes', type=int, nargs='*', default=[64,64], help='sizes of each hidden layer in the FCs that map the encoder final hidden state to sampling parameters for the latent vector')
self.parser.add_argument('--dec_fc_hidden_sizes', type=int, nargs='*', default=[64,64], help='sizes of each hidden layer in the FC net that maps the latent vector to the initial decoder hidden state')
# loss options
self.parser.add_argument('--reco_loss_type', type=str, default='l2', choices=['l1', 'l2'], help='reconstruction loss metric; choose either l1 or l2.')
self.parser.add_argument('--binary_flag_loss_weight', type=float, default=1.0, help="weight for the binary crossentropy loss term, default 1.0")
# learning setup and checkpointing options
self.parser.add_argument('--gpu_ids', type=int, default=[0], nargs='+', help='gpu ids space separated. use -1 for CPU')
self.parser.add_argument('--save_dir', type=str, help='directory in which to store model checkpoints')
self.parser.add_argument('--load_epoch', type=int, help='which epoch to load for test/continuing training')
self.parser.add_argument('--count_from_epoch', type=int, help="which epoch to count from within the specified niter+niter_decay plan, for LR scheduling and loss/checkpoint logging purposes. If unspecified, defaults to 0 (and the LR scheduler will start its epoch count from scratch)")
self.parser.add_argument('--niter', type=int, default=20, help='# of iter at starting learning rate')
self.parser.add_argument('--niter_decay', type=int, default=20, help='# of iter to linearly decay learning rate to zero')
self.parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate for adam')
self.parser.add_argument('--optimizer', type=str, choices=["adam", "adamw"], default="adam", help="choose an optimizer; default: 'adam'")
# dataset options
self.parser.add_argument('--data_norm_by', type=str, choices=['per_value', 'whole_array', 'none'], default='per_value', help='per_value normalizes the sequence dataset by coordinate; whole_array calculates a single mean/std scalar using every element in all sequences')
self.parser.add_argument('--loop_repr_type', type=str, choices=['ellipse-single', 'ellipse-multiple', 'fixed-res-polyline'], default='ellipse-multiple', help='choose the loop representation to use. "ellipse-single" allows fitting one ellipse per plane level; "ellipse-multiple" allows multiple ellipses per level, with a binary flag each timestep to determine levelup')
self.parser.add_argument('--use_eos_token', type=bool, default=False, help='in generating data, append a special EOS vector at the end of each loop sequence (defined as all-zeros params but with a 1 levelup flag); in inference, detect this EOS embedding to stop the sequence gen early.')
self.parser.add_argument('--batch_size', type=int, default=4, help="batch size, in number of meshes/sequences-of-slices per batch")
self.parser.add_argument('--dataroot', help='path to meshes (should have subfolders train, test)')
self.parser.add_argument('--mode', type=str, choices=['test', 'train'], help='either test|train. ')
self.parser.add_argument('--optfile', type=str, default='', help='specify a file with all these arguments rather than parsing them from the command line')
self.parser.add_argument('--load_test_set_for_inference', action='store_true', help='whether to load the test set for inference.py rather than the train set (which is the default)')
self.opt = None
def parse_cmdline(self, line=None):
self.opt, unknown = self.parser.parse_known_args(None if line is None else line.split(' '))
if self.opt.optfile:
return self.parse_from_file(self.opt.optfile)
return self.after_parse()
def parse_from_file(self, fname):
print('[IO ] Overriding command line args and getting arguments from file')
with open(fname, 'r') as f:
argv = filter(lambda line: line != '', map(lambda line: line.strip(), f))
argv = filter(lambda line: line[0] != '#',argv)
argv = map(lambda line: line.strip('\n'), argv)
argv = ' '.join(argv).split(' ')
self.opt, unknown = self.parser.parse_known_args(argv)
print(f"[IO ] WARNING: unknown arguments provided: {unknown}. "
"Check if you're not mistakenly setting an argument with a typo/wrong name.")
return self.after_parse()
def after_parse(self):
# sanity checks after parsing arguments
def __enforce_arg(argname):
assert has_field(self.opt, argname), f'needs argument {argname}'
__enforce_arg('mode')
__enforce_arg('save_dir')
assert self.opt
self.opt.is_train = self.opt.mode == 'train'
if self.opt.mode == 'npz':
assert has_field(self.opt, 'single_npz'), "No npz file specified"
assert has_field(self.opt, 'load_epoch'), "No epoch specified to load"
elif self.opt.mode == 'test':
assert has_field(self.opt, 'load_epoch'), "No epoch specified to load"
# make sure that in this case save_dir exists
assert os.path.isdir(self.opt.save_dir), \
"--load_epoch is specified but specified --save_dir is not a valid directory"
if self.opt.mode == 'train' or self.opt.mode == 'test':
__enforce_arg('dataroot')
if self.opt.mode == 'train':
mkdir(self.opt.save_dir)
print("========= OPTIONS for run =========")
for (k, v) in self.opt.__dict__.items():
print(f"{k}: {v}")
print("========= end OPTIONS =========")
# postprocess the loop_repr_type option...
# we need to convert that to an int
if self.opt.loop_repr_type == "ellipse-single":
self.opt.loop_repr_type = 0
elif self.opt.loop_repr_type == "ellipse-multiple":
self.opt.loop_repr_type = 1
elif self.opt.loop_repr_type == "fixed-res-polyline":
self.opt.loop_repr_type = 3
else:
raise ValueError("Unknown/unimplemented choice for --loop_repr_type")
# the gpu_ids option: if it contains -1, then we clear the list because
# the other modules expect an empty gpu_ids list in case of no-gpu
if self.opt.gpu_ids and self.opt.gpu_ids[0] == -1:
self.opt.gpu_ids = None
# save the actual ccommand used to invoke
cmdline = " ".join(map(shlex.quote, sys.argv[1:]))
self.opt.original_command = cmdline
return self.opt