-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrender.py
97 lines (81 loc) · 3.89 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from mesh import Mesh
import kaolin as kal
from utils import get_camera_from_view2
import matplotlib.pyplot as plt
from utils import device
import torch
import numpy as np
class Renderer():
def __init__(self, mesh='sample.obj',
lights=torch.tensor([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
camera=kal.render.camera.generate_perspective_projection(np.pi / 3).to(device),
dim=(224, 224)):
if camera is None:
camera = kal.render.camera.generate_perspective_projection(np.pi / 3).to(device)
self.lights = lights.unsqueeze(0).to(device)
self.camera_projection = camera
self.dim = dim
def render_views(self, mesh, num_views=8, std=8, center_elev=0, center_azim=0, show=False, lighting=True,
background=None, mask=False, return_views=False, return_mask=False):
# Front view with small perturbations in viewing angle
verts = mesh.vertices
faces = mesh.faces
n_faces = faces.shape[0]
elev = torch.randn(num_views) * np.pi / std + center_elev
azim = torch.randn(num_views) * 2 * np.pi / std + center_azim
images = []
masks = []
rgb_mask = []
if background is not None:
face_attributes = [
mesh.face_attributes,
torch.ones((1, n_faces, 3, 1), device=device)
]
else:
face_attributes = mesh.face_attributes
for i in range(num_views):
camera_transform = get_camera_from_view2(elev[i], azim[i], r=2).to(device)
face_vertices_camera, face_vertices_image, face_normals = kal.render.mesh.prepare_vertices(
mesh.vertices.to(device), mesh.faces.to(device), self.camera_projection,
camera_transform=camera_transform)
image_features, soft_mask, face_idx = kal.render.mesh.dibr_rasterization(
self.dim[1], self.dim[0], face_vertices_camera[:, :, :, -1],
face_vertices_image, face_attributes, face_normals[:, :, -1])
masks.append(soft_mask)
if background is not None:
image_features, mask = image_features
image = torch.clamp(image_features, 0.0, 1.0)
if lighting:
image_normals = face_normals[:, face_idx].squeeze(0)
image_lighting = kal.render.mesh.spherical_harmonic_lighting(image_normals, self.lights).unsqueeze(0)
image = image * image_lighting.repeat(1, 3, 1, 1).permute(0, 2, 3, 1).to(device)
image = torch.clamp(image, 0.0, 1.0)
if background is not None:
background_mask = torch.zeros(image.shape).to(device)
mask = mask.squeeze(-1)
background_idx = torch.where(mask == 0)
assert torch.all(image[background_idx] == torch.zeros(3).to(device))
background_mask[background_idx] = background#.repeat(background_idx[0].shape)
image = torch.clamp(image + background_mask, 0., 1.)
images.append(image)
images = torch.cat(images, dim=0).permute(0, 3, 1, 2)
masks = torch.cat(masks, dim=0)
if show:
with torch.no_grad():
fig, axs = plt.subplots(1 + (num_views - 1) // 4, min(4, num_views), figsize=(89.6, 22.4))
for i in range(num_views):
if num_views == 1:
ax = axs
elif num_views <= 4:
ax = axs[i]
else:
ax = axs[i // 4, i % 4]
ax.imshow(images[i].permute(1, 2, 0).cpu().numpy())
plt.show()
if return_views == True:
if return_mask == True:
return images, elev, azim, masks
else:
return images, elev, azim
else:
return images