forked from vipermu/aphantasia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathillustra.py
256 lines (218 loc) · 11.4 KB
/
illustra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import argparse
import math
import numpy as np
import cv2
import shutil
from imageio import imsave
from googletrans import Translator, constants
import torch
import torchvision
import torch.nn.functional as F
import clip
os.environ['KMP_DUPLICATE_LIB_OK']='True'
from sentence_transformers import SentenceTransformer
from clip_fft import to_valid_rgb, fft_image, slice_imgs, checkout, cvshow
from utils import pad_up_to, basename, file_list, img_list, img_read, txt_clean, plot_text
try: # progress bar for notebooks
get_ipython().__class__.__name__
from progress_bar import ProgressIPy as ProgressBar
except: # normal console
from progress_bar import ProgressBar
clip_models = ['ViT-B/32', 'RN50', 'RN50x4', 'RN101']
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--in_txt', default=None, help='Text file to process')
parser.add_argument( '--out_dir', default='_out')
parser.add_argument('-s', '--size', default='1280-720', help='Output resolution')
parser.add_argument('-r', '--resume', default=None, help='Path to saved FFT snapshots, to resume from')
parser.add_argument('-l', '--length', default=180, type=int, help='Total length in sec')
parser.add_argument( '--fstep', default=1, type=int, help='Saving step')
parser.add_argument('-tr', '--translate', action='store_true', help='Translate text with Google Translate')
parser.add_argument('-ml', '--multilang', action='store_true', help='Use SBERT multilanguage model for text')
parser.add_argument('-t0', '--in_txt0', default=None, help='input text to subtract')
parser.add_argument( '--save_pt', action='store_true', help='Save FFT snapshots for further use')
parser.add_argument( '--fps', default=25, type=int)
parser.add_argument('-v', '--verbose', default=True, type=bool)
# training
parser.add_argument('-m', '--model', default='ViT-B/32', choices=clip_models, help='Select CLIP model to use')
parser.add_argument( '--steps', default=200, type=int, help='Total iterations')
parser.add_argument( '--samples', default=200, type=int, help='Samples to evaluate')
parser.add_argument('-lr', '--lrate', default=0.05, type=float, help='Learning rate')
parser.add_argument('-p', '--prog', action='store_true', help='Enable progressive lrate growth (up to double a.lrate)')
# tweaks
parser.add_argument('-o', '--overscan', action='store_true', help='Extra padding to add seamless tiling')
parser.add_argument( '--keep', default=0, type=float, help='Accumulate imagery: 0 = random, 1 = prev ema')
parser.add_argument( '--contrast', default=1., type=float)
parser.add_argument( '--colors', default=1., type=float)
parser.add_argument( '--decay', default=1, type=float)
parser.add_argument('-e', '--enhance', default=0, type=float, help='Enhance consistency, boosts training')
parser.add_argument('-n', '--noise', default=0.02, type=float, help='Add noise to suppress accumulation')
parser.add_argument('-nt', '--notext', default=0, type=float, help='Subtract typed text as image (avoiding graffiti?), [0..1]') # 0.15
a = parser.parse_args()
if a.size is not None: a.size = [int(s) for s in a.size.split('-')][::-1]
if len(a.size)==1: a.size = a.size * 2
a.modsize = 288 if a.model == 'RN50x4' else 224
if a.multilang is True: a.model = 'ViT-B/32' # sbert model is trained with ViT
a.diverse = -a.enhance
a.expand = abs(a.enhance)
return a
def ema(base, next, step):
scale_ma = 1. / (step + 1)
return next * scale_ma + base * (1.- scale_ma)
def load_params(file):
if not os.path.isfile(file):
print(' Snapshot not found:', file); exit()
params = torch.load(file)
if isinstance(params, list): params = params[0]
return params.detach().clone()
def illustra_from_txt(
txt_file_path: str,
):
a = get_args()
a.in_txt = txt_file_path
# Load CLIP models
model_clip, _ = clip.load(a.model)
if a.verbose is True: print(' using model', a.model)
xmem = {'RN50':0.5, 'RN50x4':0.16, 'RN101':0.33}
if 'RN' in a.model:
a.samples = int(a.samples * xmem[a.model])
workdir = os.path.join(a.out_dir, basename(a.in_txt))
workdir += '-%s' % a.model if 'RN' in a.model.upper() else ''
os.makedirs(workdir, exist_ok=True)
if a.diverse != 0:
a.samples = int(a.samples * 0.5)
norm_in = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
if a.in_txt0 is not None:
if a.verbose is True: print(' subtract text:', basename(a.in_txt0))
if a.translate:
translator = Translator()
a.in_txt0 = translator.translate(a.in_txt0, dest='en').text
if a.verbose is True: print(' translated to:', a.in_txt0)
if a.multilang is True:
model_lang = SentenceTransformer('clip-ViT-B-32-multilingual-v1').cuda()
txt_enc0 = model_lang.encode([a.in_txt0], convert_to_tensor=True, show_progress_bar=False).detach().clone()
del model_lang
else:
txt_enc0 = model_clip.encode_text(clip.tokenize(a.in_txt0).cuda()).detach().clone()
# make init
global params_start, params_ema
params_shape = [1, 3, a.size[0], a.size[1]//2+1, 2]
params_start = torch.randn(*params_shape).cuda() # random init
params_ema = 0.
if a.resume is not None and os.path.isfile(a.resume):
if a.verbose is True: print(' resuming from', a.resume)
params_start = load_params(a.resume).cuda()
if a.keep > 0:
params_ema = params_start[0].detach().clone()
else:
a.resume = 'init.pt'
torch.save(params_start, 'init.pt') # final init
shutil.copy(a.resume, os.path.join(workdir, '000-%s.pt' % basename(a.resume)))
prev_enc = 0
def process(txt, num):
sd = 0.01
if a.keep > 0: sd = a.keep + (1-a.keep) * sd
params, image_f = fft_image([1, 3, *a.size], resume='init.pt', sd=sd, decay_power=a.decay)
image_f = to_valid_rgb(image_f, colors = a.colors)
if a.prog is True:
lr1 = a.lrate * 2
lr0 = a.lrate * 0.1
else:
lr0 = a.lrate
optimizer = torch.optim.Adam(params, lr0)
if a.verbose is True: print(' ref text: ', txt)
if a.translate:
translator = Translator()
txt = translator.translate(txt, dest='en').text
if a.verbose is True: print(' translated to:', txt)
if a.multilang is True:
model_lang = SentenceTransformer('clip-ViT-B-32-multilingual-v1').cuda()
txt_enc = model_lang.encode([txt], convert_to_tensor=True, show_progress_bar=False).detach().clone()
del model_lang
else:
txt_enc = model_clip.encode_text(clip.tokenize(txt).cuda()).detach().clone()
if a.notext > 0:
txt_plot = torch.from_numpy(plot_text(txt, a.modsize)/255.).unsqueeze(0).permute(0,3,1,2).cuda()
txt_plot_enc = model_clip.encode_image(txt_plot).detach().clone()
else: txt_plot_enc = None
out_name = '%03d-%s' % (num+1, txt_clean(txt))
out_name += '-%s' % a.model if 'RN' in a.model.upper() else ''
tempdir = os.path.join(workdir, out_name)
os.makedirs(tempdir, exist_ok=True)
pbar = ProgressBar(a.steps // a.fstep)
for i in range(a.steps):
loss = 0
noise = a.noise * torch.randn(1, 1, *params[0].shape[2:4], 1).cuda() if a.noise > 0 else None
img_out = image_f(noise)
imgs_sliced = slice_imgs([img_out], a.samples, a.modsize, norm_in, a.overscan, micro=None)
out_enc = model_clip.encode_image(imgs_sliced[-1])
loss -= torch.cosine_similarity(txt_enc, out_enc, dim=-1).mean()
if a.notext > 0:
loss += a.notext * torch.cosine_similarity(txt_plot_enc, out_enc, dim=-1).mean()
if a.diverse != 0:
imgs_sliced = slice_imgs([image_f(noise)], a.samples, a.modsize, norm_in, a.overscan, micro=None)
out_enc2 = model_clip.encode_image(imgs_sliced[-1])
loss += a.diverse * torch.cosine_similarity(out_enc, out_enc2, dim=-1).mean()
del out_enc2; torch.cuda.empty_cache()
if a.expand > 0:
global prev_enc
if i > 0:
loss += a.expand * torch.cosine_similarity(out_enc, prev_enc, dim=-1).mean()
prev_enc = out_enc.detach().clone()
if a.in_txt0 is not None: # subtract text
loss += torch.cosine_similarity(txt_enc0, out_enc, dim=-1).mean()
del img_out, imgs_sliced, out_enc; torch.cuda.empty_cache()
if a.prog is True:
lr_cur = lr0 + (i / a.steps) * (lr1 - lr0)
for g in optimizer.param_groups:
g['lr'] = lr_cur
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % a.fstep == 0:
with torch.no_grad():
img = image_f(contrast=a.contrast).cpu().numpy()[0]
checkout(img, os.path.join(tempdir, '%04d.jpg' % (i // a.fstep)), verbose=a.verbose)
pbar.upd()
del img
if a.keep > 0:
global params_start, params_ema
params_ema = ema(params_ema, params[0].detach().clone(), num+1)
torch.save((1-a.keep) * params_start + a.keep * params_ema, 'init.pt')
torch.save(params[0], '%s.pt' % os.path.join(workdir, out_name))
shutil.copy(img_list(tempdir)[-1], os.path.join(workdir, '%s-%d.jpg' % (out_name, a.steps)))
os.system('ffmpeg -v warning -y -i %s\%%04d.jpg "%s.mp4"' % (tempdir, os.path.join(workdir, out_name)))
with open(a.in_txt, 'r', encoding="utf-8") as f:
texts = f.readlines()
texts = [tt.strip() for tt in texts if len(tt.strip()) > 0 and tt[0] != '#']
if a.verbose is True:
print(' total lines:', len(texts))
print(' samples:', a.samples)
for i, txt in enumerate(texts):
process(txt, i)
vsteps = int(a.length * 25 / len(texts)) # 25 fps
tempdir = os.path.join(workdir, '_final')
os.makedirs(tempdir, exist_ok=True)
def read_pt(file):
return torch.load(file).cuda()
if a.verbose is True: print(' rendering complete piece')
ptfiles = file_list(workdir, 'pt')
pbar = ProgressBar(vsteps * len(ptfiles))
for px in range(len(ptfiles)):
params1 = read_pt(ptfiles[px])
params2 = read_pt(ptfiles[(px+1) % len(ptfiles)])
params, image_f = fft_image([1, 3, *a.size], resume=params1, sd=1., decay_power=a.decay)
image_f = to_valid_rgb(image_f, colors = a.colors)
for i in range(vsteps):
with torch.no_grad():
img = image_f((params2 - params1) * math.sin(1.5708 * i/vsteps)**2)[0].permute(1,2,0)
img = torch.clip(img*255, 0, 255).cpu().numpy().astype(np.uint8)
imsave(os.path.join(tempdir, '%05d.jpg' % (px * vsteps + i)), img)
if a.verbose is True: cvshow(img)
pbar.upd()
os.system('ffmpeg -v warning -y -i %s\%%05d.jpg "%s.mp4"' % (tempdir, os.path.join(a.out_dir, basename(a.in_txt))))
if a.keep > 0: os.remove('init.pt')
if __name__ == '__main__':
txt_file_path = "prompts.txt"
illustra_from_txt()