-
Notifications
You must be signed in to change notification settings - Fork 37
/
diarize.py
227 lines (192 loc) · 8.61 KB
/
diarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python3
import datetime
import time
import os
import json
import torch
import contextlib
whisper_models = ["small", "medium", "small.en","medium.en"]
source_languages = {
"en": "English",
"zh": "Chinese",
"de": "German",
"es": "Spanish",
"ru": "Russian",
"ko": "Korean",
"fr": "French"
}
source_language_list = [key[0] for key in source_languages.items()]
# Download video .m4a and info.json
def get_youtube(video_url):
import yt_dlp
ydl_opts = { 'format': 'bestaudio[ext=m4a]' }
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(video_url, download=False)
info['title'] = info['title'].replace('$','').replace('|','-')
abs_video_path = ydl.prepare_filename(info)
with open(abs_video_path.replace('m4a','info.json'), 'w') as outfile:
json.dump(info, outfile, indent=2)
ydl.process_info(info)
print("Success download",video_url,"to", abs_video_path)
return abs_video_path
# Convert video .m4a into .wav
def convert_to_wav(video_file_path, offset = 0):
out_path = video_file_path.replace("m4a","wav")
if os.path.exists(out_path):
print("wav file already exists:", out_path)
return out_path
try:
print("starting conversion to wav")
offset_args = f"-ss {offset}" if offset>0 else ''
os.system(f'ffmpeg {offset_args} -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
print("conversion to wav ready:", out_path)
except Exception as e:
raise RuntimeError("Error converting.")
return out_path
# Transcribe .wav into .segments.json
def speech_to_text(video_file_path, selected_source_lang = 'en', whisper_model = 'small.en', vad_filter = False):
print('loading faster_whisper model:', whisper_model)
from faster_whisper import WhisperModel
model = WhisperModel(whisper_model, device="cuda")
time_start = time.time()
if(video_file_path == None):
raise ValueError("Error no video input")
print(video_file_path)
try:
# Read and convert youtube video
_,file_ending = os.path.splitext(f'{video_file_path}')
audio_file = video_file_path.replace(file_ending, ".wav")
out_file = video_file_path.replace(file_ending, ".segments.json")
if os.path.exists(out_file):
print("segments file already exists:", out_file)
with open(out_file) as f:
segments = json.load(f)
return segments
# Transcribe audio
print('starting transcription...')
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
transcribe_options = dict(task="transcribe", **options)
# TODO: https://github.com/SYSTRAN/faster-whisper#vad-filter
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
# Convert back to original openai format
segments = []
i = 0
for segment_chunk in segments_raw:
chunk = {}
chunk["start"] = segment_chunk.start
chunk["end"] = segment_chunk.end
chunk["text"] = segment_chunk.text
print(chunk)
segments.append(chunk)
i += 1
print("transcribe audio done with fast whisper")
with open(out_file,'w') as f:
f.write(json.dumps(segments, indent=2))
except Exception as e:
raise RuntimeError("Error transcribing.")
return segments
# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1
# embedding_model = "pyannote/embedding", embedding_size=512
# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192
def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0):
"""
1. Generating speaker embeddings for each segments.
2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
"""
try:
# Load embedding model
from pyannote.audio import Audio
from pyannote.core import Segment
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
import numpy as np
import pandas as pd
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
import tqdm
_,file_ending = os.path.splitext(f'{video_file_path}')
audio_file = video_file_path.replace(file_ending, ".wav")
out_file = video_file_path.replace(file_ending, ".diarize.json")
# Get duration
import wave
with contextlib.closing(wave.open(audio_file,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
print(f"duration of audio file: {duration}")
# Create embedding
def segment_embedding(segment):
audio = Audio()
start = segment["start"]
end = segment["end"]
# enforce a minimum segment length
if end-start < 0.3:
padding = 0.3-(end-start)
start -= padding/2
end += padding/2
print('Padded segment because it was too short:',segment)
# Whisper overshoots the end timestamp in the last segment
end = min(duration, end)
# clip audio and embed
clip = Segment(start, end)
waveform, sample_rate = audio.crop(audio_file, clip)
return embedding_model(waveform[None])
embeddings = np.zeros(shape=(len(segments), embedding_size))
for i, segment in enumerate(tqdm.tqdm(segments)):
embeddings[i] = segment_embedding(segment)
embeddings = np.nan_to_num(embeddings)
print(f'Embedding shape: {embeddings.shape}')
if num_speakers == 0:
# Find the best number of speakers
score_num_speakers = {}
for num_speakers in range(2, 10+1):
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
score_num_speakers[num_speakers] = score
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
else:
best_num_speaker = num_speakers
# Assign speaker label
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
labels = clustering.labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
with open(out_file,'w') as f:
f.write(json.dumps(segments, indent=2))
# Make CSV output
def convert_time(secs):
return datetime.timedelta(seconds=round(secs))
objects = {
'Start' : [],
'End': [],
'Speaker': [],
'Text': []
}
text = ''
for (i, segment) in enumerate(segments):
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
objects['Start'].append(str(convert_time(segment["start"])))
objects['Speaker'].append(segment["speaker"])
if i != 0:
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
text = ''
text += segment["text"] + ' '
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
save_path = video_file_path.replace(file_ending, ".csv")
df_results = pd.DataFrame(objects)
df_results.to_csv(save_path)
return df_results, save_path
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
def main(youtube_url: str, num_speakers: int = 2, whisper_model: str = "small.en", offset: int = 0, vad_filter : bool = False):
video_path = get_youtube(youtube_url)
convert_to_wav(video_path, offset)
segments = speech_to_text(video_path, whisper_model=whisper_model, vad_filter=vad_filter)
df_results, save_path = speaker_diarize(video_path, segments, num_speakers=num_speakers)
print("diarize complete:", save_path)
if __name__ == "__main__":
import fire
fire.Fire(main)