-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathMiniPID.cpp
372 lines (329 loc) · 10.7 KB
/
MiniPID.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/**
* Small, easy to use PID implementation with advanced controller capability.<br>
* Minimal usage:<br>
* setPID(p,i,d); <br>
* ...looping code...{ <br>
* output=getOutput(sensorvalue,target); <br>
* }
*
* @see http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-direction/improving-the-beginners-pid-introduction
*/
#include "MiniPID.h"
//**********************************
//Constructor functions
//**********************************
MiniPID::MiniPID(double p, double i, double d){
init();
P=p; I=i; D=d;
}
MiniPID::MiniPID(double p, double i, double d, double f){
init();
P=p; I=i; D=d; F=f;
}
void MiniPID::init(){
P=0;
I=0;
D=0;
F=0;
maxIOutput=0;
maxError=0;
errorSum=0;
maxOutput=0;
minOutput=0;
setpoint=0;
lastActual=0;
firstRun=true;
reversed=false;
outputRampRate=0;
lastOutput=0;
outputFilter=0;
setpointRange=0;
}
//**********************************
//Configuration functions
//**********************************
/**
* Configure the Proportional gain parameter. <br>
* this->responds quicly to changes in setpoint, and provides most of the initial driving force
* to make corrections. <br>
* Some systems can be used with only a P gain, and many can be operated with only PI.<br>
* For position based controllers, this->is the first parameter to tune, with I second. <br>
* For rate controlled systems, this->is often the second after F.
*
* @param p Proportional gain. Affects output according to <b>output+=P*(setpoint-current_value)</b>
*/
void MiniPID::setP(double p){
P=p;
checkSigns();
}
/**
* Changes the I parameter <br>
* this->is used for overcoming disturbances, and ensuring that the controller always gets to the control mode.
* Typically tuned second for "Position" based modes, and third for "Rate" or continuous based modes. <br>
* Affects output through <b>output+=previous_errors*Igain ;previous_errors+=current_error</b>
*
* @see {@link #setMaxIOutput(double) setMaxIOutput} for how to restrict
*
* @param i New gain value for the Integral term
*/
void MiniPID::setI(double i){
if(I!=0){
errorSum=errorSum*I/i;
}
if(maxIOutput!=0){
maxError=maxIOutput/i;
}
I=i;
checkSigns();
/* Implementation note:
* this->Scales the accumulated error to avoid output errors.
* As an example doubling the I term cuts the accumulated error in half, which results in the
* output change due to the I term constant during the transition.
*
*/
}
void MiniPID::setD(double d){
D=d;
checkSigns();
}
/**Configure the FeedForward parameter. <br>
* this->is excellent for Velocity, rate, and other continuous control modes where you can
* expect a rough output value based solely on the setpoint.<br>
* Should not be used in "position" based control modes.
*
* @param f Feed forward gain. Affects output according to <b>output+=F*Setpoint</b>;
*/
void MiniPID::setF(double f){
F=f;
checkSigns();
}
/** Create a new PID object.
* @param p Proportional gain. Large if large difference between setpoint and target.
* @param i Integral gain. Becomes large if setpoint cannot reach target quickly.
* @param d Derivative gain. Responds quickly to large changes in error. Small values prevents P and I terms from causing overshoot.
*/
void MiniPID::setPID(double p, double i, double d){
P=p;I=i;D=d;
checkSigns();
}
void MiniPID::setPID(double p, double i, double d,double f){
P=p;I=i;D=d;F=f;
checkSigns();
}
/**Set the maximum output value contributed by the I component of the system
* this->can be used to prevent large windup issues and make tuning simpler
* @param maximum. Units are the same as the expected output value
*/
void MiniPID::setMaxIOutput(double maximum){
/* Internally maxError and Izone are similar, but scaled for different purposes.
* The maxError is generated for simplifying math, since calculations against
* the max error are far more common than changing the I term or Izone.
*/
maxIOutput=maximum;
if(I!=0){
maxError=maxIOutput/I;
}
}
/**Specify a maximum output. If a single parameter is specified, the minimum is
* set to (-maximum).
* @param output
*/
void MiniPID::setOutputLimits(double output){ setOutputLimits(-output,output);}
/**
* Specify a maximum output.
* @param minimum possible output value
* @param maximum possible output value
*/
void MiniPID::setOutputLimits(double minimum,double maximum){
if(maximum<minimum)return;
maxOutput=maximum;
minOutput=minimum;
// Ensure the bounds of the I term are within the bounds of the allowable output swing
if(maxIOutput==0 || maxIOutput>(maximum-minimum) ){
setMaxIOutput(maximum-minimum);
}
}
/** Set the operating direction of the PID controller
* @param reversed Set true to reverse PID output
*/
void MiniPID::setDirection(bool reversed){
this->reversed=reversed;
}
//**********************************
//Primary operating functions
//**********************************
/**Set the target for the PID calculations
* @param setpoint
*/
void MiniPID::setSetpoint(double setpoint){
this->setpoint=setpoint;
}
/** Calculate the PID value needed to hit the target setpoint.
* Automatically re-calculates the output at each call.
* @param actual The monitored value
* @param target The target value
* @return calculated output value for driving the actual to the target
*/
double MiniPID::getOutput(double actual, double setpoint){
double output;
double Poutput;
double Ioutput;
double Doutput;
double Foutput;
this->setpoint=setpoint;
//Ramp the setpoint used for calculations if user has opted to do so
if(setpointRange!=0){
setpoint=clamp(setpoint,actual-setpointRange,actual+setpointRange);
}
//Do the simple parts of the calculations
double error=setpoint-actual;
//Calculate F output. Notice, this->depends only on the setpoint, and not the error.
Foutput=F*setpoint;
//Calculate P term
Poutput=P*error;
//If this->is our first time running this-> we don't actually _have_ a previous input or output.
//For sensor, sanely assume it was exactly where it is now.
//For last output, we can assume it's the current time-independent outputs.
if(firstRun){
lastActual=actual;
lastOutput=Poutput+Foutput;
firstRun=false;
}
//Calculate D Term
//Note, this->is negative. this->actually "slows" the system if it's doing
//the correct thing, and small values helps prevent output spikes and overshoot
Doutput= -D*(actual-lastActual);
lastActual=actual;
//The Iterm is more complex. There's several things to factor in to make it easier to deal with.
// 1. maxIoutput restricts the amount of output contributed by the Iterm.
// 2. prevent windup by not increasing errorSum if we're already running against our max Ioutput
// 3. prevent windup by not increasing errorSum if output is output=maxOutput
Ioutput=I*errorSum;
if(maxIOutput!=0){
Ioutput=clamp(Ioutput,-maxIOutput,maxIOutput);
}
//And, finally, we can just add the terms up
output=Foutput + Poutput + Ioutput + Doutput;
//Figure out what we're doing with the error.
if(minOutput!=maxOutput && !bounded(output, minOutput,maxOutput) ){
errorSum=error;
// reset the error sum to a sane level
// Setting to current error ensures a smooth transition when the P term
// decreases enough for the I term to start acting upon the controller
// From that point the I term will build up as would be expected
}
else if(outputRampRate!=0 && !bounded(output, lastOutput-outputRampRate,lastOutput+outputRampRate) ){
errorSum=error;
}
else if(maxIOutput!=0){
errorSum=clamp(errorSum+error,-maxError,maxError);
// In addition to output limiting directly, we also want to prevent I term
// buildup, so restrict the error directly
}
else{
errorSum+=error;
}
//Restrict output to our specified output and ramp limits
if(outputRampRate!=0){
output=clamp(output, lastOutput-outputRampRate,lastOutput+outputRampRate);
}
if(minOutput!=maxOutput){
output=clamp(output, minOutput,maxOutput);
}
if(outputFilter!=0){
output=lastOutput*outputFilter+output*(1-outputFilter);
}
lastOutput=output;
return output;
}
/**
* Calculates the PID value using the last provided setpoint and actual valuess
* @return calculated output value for driving the actual to the target
*/
double MiniPID::getOutput(){
return getOutput(lastActual,setpoint);
}
/**
*
* @param actual
* @return calculated output value for driving the actual to the target
*/
double MiniPID::getOutput(double actual){
return getOutput(actual,setpoint);
}
/**
* Resets the controller. this->erases the I term buildup, and removes D gain on the next loop.
*/
void MiniPID::reset(){
firstRun=true;
errorSum=0;
}
/**Set the maximum rate the output can increase per cycle.
* @param rate
*/
void MiniPID::setOutputRampRate(double rate){
outputRampRate=rate;
}
/** Set a limit on how far the setpoint can be from the current position
* <br>Can simplify tuning by helping tuning over a small range applies to a much larger range.
* <br>this->limits the reactivity of P term, and restricts impact of large D term
* during large setpoint adjustments. Increases lag and I term if range is too small.
* @param range
*/
void MiniPID::setSetpointRange(double range){
setpointRange=range;
}
/**Set a filter on the output to reduce sharp oscillations. <br>
* 0.1 is likely a sane starting value. Larger values P and D oscillations, but force larger I values.
* Uses an exponential rolling sum filter, according to a simple <br>
* <pre>output*(1-strength)*sum(0..n){output*strength^n}</pre>
* @param output valid between [0..1), meaning [current output only.. historical output only)
*/
void MiniPID::setOutputFilter(double strength){
if(strength==0 || bounded(strength,0,1)){
outputFilter=strength;
}
}
//**************************************
// Helper functions
//**************************************
/**
* Forces a value into a specific range
* @param value input value
* @param min maximum returned value
* @param max minimum value in range
* @return Value if it's within provided range, min or max otherwise
*/
double MiniPID::clamp(double value, double min, double max){
if(value > max){ return max;}
if(value < min){ return min;}
return value;
}
/**
* Test if the value is within the min and max, inclusive
* @param value to test
* @param min Minimum value of range
* @param max Maximum value of range
* @return
*/
bool MiniPID::bounded(double value, double min, double max){
return (min<value) && (value<max);
}
/**
* To operate correctly, all PID parameters require the same sign,
* with that sign depending on the {@literal}reversed value
*/
void MiniPID::checkSigns(){
if(reversed){ //all values should be below zero
if(P>0) P*=-1;
if(I>0) I*=-1;
if(D>0) D*=-1;
if(F>0) F*=-1;
}
else{ //all values should be above zero
if(P<0) P*=-1;
if(I<0) I*=-1;
if(D<0) D*=-1;
if(F<0) F*=-1;
}
}