From 189904bceaf7e7107fafb79fccd33de5b882862c Mon Sep 17 00:00:00 2001 From: "DESKTOP-TCK8UDP\\tegusi" Date: Mon, 9 Jul 2018 19:53:25 +0800 Subject: [PATCH] Tensorflow version --- train_tf.py | 109 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 109 insertions(+) create mode 100644 train_tf.py diff --git a/train_tf.py b/train_tf.py new file mode 100644 index 0000000..23004fd --- /dev/null +++ b/train_tf.py @@ -0,0 +1,109 @@ +import mymodel, mymodel_knn,seg_model + +import tensorflow as tf +import numpy as np +import time,json +import os +os.environ["CUDA_VISIBLE_DEVICES"]="2" + +def genData(cls,limit=None): + assert type(cls) is str + + seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43], + 'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46], + 'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27], + 'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40], 'Chair': [12, 13, 14, 15], + 'Knife': [22, 23]} + + data = np.load("/home/tegs/RGCNN/data_%s.npy" % cls) + label = np.load("/home/tegs/RGCNN/label_%s.npy" % cls) + + data = data[:limit] + label = label[:limit] + + seg = {} + name = {} + i = 0 + for k,v in sorted(seg_classes.items()): + for value in v: + seg[value] = i + name[value] = k + i += 1 + cnt = data.shape[0] + cat = np.zeros((cnt)) + for i in range(cnt): + cat[i] = seg[label[i][0]] + return data,label,cat + +def train(): + train_data, train_label, train_cat = genData('train') + val_data, val_label, val_cat = genData('val') + test_data, test_label, test_cat = genData('test') + params = dict() + params['dir_name'] = 'model' + params['num_epochs'] = 50 + params['batch_size'] = 26 + params['eval_frequency'] = 30 + + # Building blocks. + params['filter'] = 'chebyshev5' + params['brelu'] = 'b1relu' + params['pool'] = 'apool1' + + # Number of classes. + # C = y.max() + 1 + # assert C == np.unique(y) .size + + # Architecture. + params['F'] = [128, 512, 1024, 512, 128, 50] # Number of graph convolutional filters. + params['K'] = [6, 5, 3, 1, 1, 1] # Polynomial orders. + params['M'] = [384, 16, 1] # Output dimensionality of fully connected layers. + + # Optimization. + params['regularization'] = 1e-9 + params['dropout'] = 1 + params['learning_rate'] = 1e-3 + params['decay_rate'] = 0.95 + params['momentum'] = 0 + params['decay_steps'] = train_data.shape[0] / params['batch_size'] + + model = seg_model.rgcnn(2048, **params) + accuracy, loss, t_step = model.fit(train_data, train_cat, train_label, val_data, val_cat, val_label, + is_continue=False) + +def test(): + test_data, test_label, test_cat = genData('test') + params = dict() + params['dir_name'] = 'model' + params['num_epochs'] = 50 + params['batch_size'] = 26 + params['eval_frequency'] = 30 + + # Building blocks. + params['filter'] = 'chebyshev5' + params['brelu'] = 'b1relu' + params['pool'] = 'apool1' + + # Number of classes. + # C = y.max() + 1 + # assert C == np.unique(y) .size + + # Architecture. + params['F'] = [128, 512, 1024, 512, 128, 50] # Number of graph convolutional filters. + params['K'] = [6, 5, 3, 1, 1, 1] # Polynomial orders. + params['M'] = [384, 16, 1] # Output dimensionality of fully connected layers. For classification only + + # Optimization. + params['regularization'] = 1e-9 + params['dropout'] = 1 + params['learning_rate'] = 1e-3 + params['decay_rate'] = 0.95 + params['momentum'] = 0 + params['decay_steps'] = test_data.shape[0] / params['batch_size'] + + model = seg_model.rgcnn(2048, **params) + model.evaluate(test_data,test_cat,test_label) + + +if __name__=="__main__": + train() \ No newline at end of file