forked from huggingface/pytorch-image-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclean_checkpoint.py
executable file
·80 lines (65 loc) · 3.15 KB
/
clean_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/env python3
""" Checkpoint Cleaning Script
Takes training checkpoints with GPU tensors, optimizer state, extra dict keys, etc.
and outputs a CPU tensor checkpoint with only the `state_dict` along with SHA256
calculation for model zoo compatibility.
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
"""
import torch
import argparse
import os
import hashlib
import shutil
from collections import OrderedDict
from timm.models.helpers import load_state_dict
parser = argparse.ArgumentParser(description='PyTorch Checkpoint Cleaner')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--output', default='', type=str, metavar='PATH',
help='output path')
parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true',
help='use ema version of weights if present')
parser.add_argument('--clean-aux-bn', dest='clean_aux_bn', action='store_true',
help='remove auxiliary batch norm layers (from SplitBN training) from checkpoint')
_TEMP_NAME = './_checkpoint.pth'
def main():
args = parser.parse_args()
if os.path.exists(args.output):
print("Error: Output filename ({}) already exists.".format(args.output))
exit(1)
clean_checkpoint(args.checkpoint, args.output, not args.no_use_ema, args.clean_aux_bn)
def clean_checkpoint(checkpoint, output='', use_ema=True, clean_aux_bn=False):
# Load an existing checkpoint to CPU, strip everything but the state_dict and re-save
if checkpoint and os.path.isfile(checkpoint):
print("=> Loading checkpoint '{}'".format(checkpoint))
state_dict = load_state_dict(checkpoint, use_ema=use_ema)
new_state_dict = {}
for k, v in state_dict.items():
if clean_aux_bn and 'aux_bn' in k:
# If all aux_bn keys are removed, the SplitBN layers will end up as normal and
# load with the unmodified model using BatchNorm2d.
continue
name = k[7:] if k.startswith('module') else k
new_state_dict[name] = v
print("=> Loaded state_dict from '{}'".format(checkpoint))
try:
torch.save(new_state_dict, _TEMP_NAME, _use_new_zipfile_serialization=False)
except:
torch.save(new_state_dict, _TEMP_NAME)
with open(_TEMP_NAME, 'rb') as f:
sha_hash = hashlib.sha256(f.read()).hexdigest()
if output:
checkpoint_root, checkpoint_base = os.path.split(output)
checkpoint_base = os.path.splitext(checkpoint_base)[0]
else:
checkpoint_root = ''
checkpoint_base = os.path.splitext(checkpoint)[0]
final_filename = '-'.join([checkpoint_base, sha_hash[:8]]) + '.pth'
shutil.move(_TEMP_NAME, os.path.join(checkpoint_root, final_filename))
print("=> Saved state_dict to '{}, SHA256: {}'".format(final_filename, sha_hash))
return final_filename
else:
print("Error: Checkpoint ({}) doesn't exist".format(checkpoint))
return ''
if __name__ == '__main__':
main()