-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoku.py
executable file
·501 lines (451 loc) · 18.8 KB
/
sudoku.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
#!/usr/bin/env python
"""
Sudoku solver... with explanations and everything...
"""
from itertools import combinations, product
from operator import itemgetter
import numpy as np
__author__ = 'taylanbil'
def subgroups_helper(triple):
ans = [''.join(i) for i in list(combinations(triple, 2))]
# No need for the + list(triple) because fitted single cells are already
# picked up by the other groups.
return set(ans)
MEANINGFUL_SUBGROUPS = {
'row': set(['123', '456', '789']),
'column': set(['123', '456', '789']),
'square': set(['123', '456', '789', '147', '258', '369'])
}
for key in MEANINGFUL_SUBGROUPS.keys():
tmp = set([])
for triple in MEANINGFUL_SUBGROUPS[key]:
tmp.update(subgroups_helper(triple))
MEANINGFUL_SUBGROUPS[key].update(tmp)
class SudokuCell(object):
def __init__(self, val=None):
self.set_value(val)
self.set_possible_vals(val)
# self.is_set = False if val is None else True
self.is_set = False
def set_value(self, val):
self.val = val
if val is not None:
self.set_possible_vals(val)
# self.is_set = True
def set_possible_vals(self, possible_vals):
if possible_vals is None:
self.possible_vals = set(range(1, 10))
elif isinstance(possible_vals, int):
self.possible_vals = set([possible_vals])
else:
self.possible_vals = set(possible_vals)
# if len(self.possible_vals) == 1:
# self.is_set = True
def eliminate_possibilities(self, val):
if isinstance(val, int):
val = [val]
self.possible_vals.difference_update(set(val))
# if len(self.possible_vals) == 1:
# self.is_set = True
def check_possibility(self, val):
return val in self.possible_vals
class SudokuGroup(object):
def __init__(self, cells, group_kind, id_num):
assert len(cells) == 9
self.cells = zip(range(1, 10), cells) # [(1, c1), (2, c2), ...]
self.settled_combinations = set([])
self.spotted_vals = set([])
self.places = set(xrange(1, 10))
self.meaningful_subgroups = MEANINGFUL_SUBGROUPS[group_kind]
self.group_kind = group_kind
self.id_num = id_num
def every_cell_has_val(self):
return all([len(cell.possible_vals)
for cell in map(itemgetter(1), self.cells)])
def every_val_has_cell(self):
return all([self.val_has_cell(val) for val in self.places])
def val_has_cell(self, val):
for i, cell in self.cells:
if val in cell.possible_vals:
return True
else:
return False
def same_value_set(self, val):
value_set = False
for i, cell in self.cells:
if val in cell.possible_vals and len(cell.possible_vals) == 1:
if value_set:
return True
else:
value_set = True
else:
return False
def duplicate_values_set(self):
for val in self.places:
if self.same_value_set(val):
return True
else:
return False
def check_group_validity(self):
if self.every_cell_has_val() and self.every_val_has_cell() and \
not self.duplicate_values_set():
return True
else:
return False
def settle_combination(self, nuple, fitted_cells, settle_type,
explain=True):
not_this_nuple = self.places.difference(nuple)
fitted_cell_list = map(itemgetter(1), fitted_cells)
for i, cell in self.cells:
if cell in fitted_cell_list:
cell.eliminate_possibilities(not_this_nuple)
else:
cell.eliminate_possibilities(nuple)
self.settled_combinations.add(nuple)
# Explanation
if explain and len(nuple) == 1:
cell = fitted_cell_list[0]
if not cell.is_set:
cell.is_set = True
other_group_kinds = {'square', 'row', 'column'}.difference(
set([self.group_kind]))
other_group_kinds = list(other_group_kinds)
args = (list(nuple)[0], self.group_kind, self.id_num + 1,
other_group_kinds[0], other_group_kinds[1])
print(('There is only one cell that can contain the value %s in'
' %s #%s! Adjusting the appropriate %s and %s'
' accordingly.' % args))
elif explain and settle_type == 'fit':
print(('In %s #%s, there are %s cells with only possible values'
' %s, so the other cells in this %s cannot contain any of'
' %s' % (self.group_kind, self.id_num+1, len(nuple),
list(nuple), self.group_kind, list(nuple))))
elif explain:
print(('In %s #%s, the values %s can only be in %s cells. So those'
' cells cannot contain any other value'
% (self.group_kind, self.id_num+1, list(nuple), len(nuple))))
def could_relate(self, n):
container = ''.join(map(str, [i for i, cell in self.cells
if n in cell.possible_vals]))
if container in self.meaningful_subgroups:
return container, n
return False, None
def fit_combination(self, nuple, explain=True):
fitted_cells = [(i, cell) for i, cell in self.cells
if nuple.issuperset(cell.possible_vals)]
if len(fitted_cells) == len(nuple):
# settled
self.settle_combination(nuple, fitted_cells, 'fit')
def fit(self, n, explain=True):
"""
This should be called with n <= 4
"""
for nuple in combinations(xrange(1, 10), n):
if self.to_fit(nuple):
self.fit_combination(frozenset(nuple), explain=True)
def spot(self, n, explain=True):
for nuple in combinations(xrange(1, 10), n):
if self.to_fit(nuple):
self.spot_combination(frozenset(nuple), explain=True)
def spot_combination(self, nuple, explain=True):
disjoint_cells = [(i, cell) for i, cell in self.cells
if nuple.isdisjoint(cell.possible_vals)]
disjoint_indices = map(itemgetter(0), disjoint_cells)
overlapping_cells = [(i, cell) for i, cell in self.cells
if i not in disjoint_indices]
if len(disjoint_cells) + len(nuple) == 9:
self.settle_combination(nuple, overlapping_cells, 'spot')
def to_fit(self, nuple):
return not any(settled_comb.issubset(nuple)
for settled_comb in self.settled_combinations)
def is_solved(self):
if self.check_group_validity():
return all([len(cell.possible_vals) == 1
for cell in map(itemgetter(1), self.cells)])
else:
return False
class SudokuTable(object):
def __init__(self, table):
"""
squares must be a 9 by 9 nested array
"""
self.line = '-' * 73
self.table = np.array(table)
assert self.table.shape == (9, 9)
self.groupify()
self.solved = False
def groupify(self):
self.rows = []
self.columns = []
self.sq3 = []
# rows
for row in xrange(9):
group_row = SudokuGroup(self.table[row, :].ravel(), 'row', row)
self.rows.append(group_row)
# columns
for col in xrange(9):
group_col = SudokuGroup(self.table[:, col].ravel(), 'column', col)
self.columns.append(group_col)
# 3by3 squares
for i, j in product(range(3), range(3)):
# order:
# (0, 0), (0, 1), (0, 2), (1, 0), ..., (2, 1), (2, 2)
group_sq3 = SudokuGroup(self.table[3*i:3*i+3, 3*j:3*j+3].ravel(),
'square', i*3+j)
self.sq3.append(group_sq3)
self.groups = self.rows + self.columns + self.sq3
def check_table_validity(self):
for group in self.groups:
if not group.check_group_validity():
return False
else:
return True
def to_string(self):
ans = []
for row_num, row in enumerate(self.table):
ans.append(self.line)
if not row_num % 3:
ans.append(self.line)
for i in xrange(3):
ans.append(self.get_line_i(i, row))
ans.append(self.line)
ans.append(self.line)
return '\n'.join(ans)
def get_line_i(self, i, cells):
assert i in [0, 1, 2]
assert len(cells) == 9
ans = []
for v, cell in enumerate(cells):
if not v % 3:
ans.append(' | ')
tmp = []
for j in range(3*i+1, 3*i+4):
tmp.append('%s' % j if j in cell.possible_vals else ' ')
ans.append(''.join(tmp))
return '%s%s' % (' ', ' - '.join(ans))
def solve(self, explain=True):
old_outer, old = None, None
new = ''
i = 0
if explain:
print('INITIAL PROBLEM')
print(self.to_string())
while old_outer != new and not self.solved:
valid = self.check_table_validity()
while old != new and not self.solved and valid:
valid = self.check_table_validity()
if not valid:
print('This Sudoku is not solvable')
return False
break
i += 1
old = new
self.solve_single_pass_no_relating(explain)
new = self.to_string()
if explain:
print new
if all([row.is_solved() for row in self.rows]):
self.solved = True
print('SOLVED!')
break
return True
else:
old_outer = new
self.relate_groups()
new = self.to_string()
if all([row.is_solved() for row in self.rows]):
self.solved = True
break
elif explain:
print new
if not self.solved and valid:
print('Couldn\'t solve this Sudoku :( Switching to trial/error')
# XXX: implement trial error
return
if not explain:
print(self.to_string())
def identify_group(self, i):
return i // 9, i % 9
def get_related_group(self, gtype, num, relation):
relation = set(relation)
if gtype == 'sq3' and \
any([relation.issubset(tmp)
for tmp in [set('123'), set('456'), set('789')]]):
# row
ans = (num // 3) * 3 + relation.issubset(set('456')) + \
2 * relation.issubset(set('789'))
return ans
elif gtype == 'sq3':
# column
ans = 9 + (num % 3) * 3 + relation.issubset(set('258')) + \
2 * relation.issubset(set('369'))
return ans
elif gtype == 'row':
# square
ans = 18 + (num // 3) * 3
ans += relation.issubset(set('456')) + \
2 * relation.issubset(set('789'))
return ans
else: # column
# square
ans = 18 + (num // 3) + 3 * (
relation.issubset(set('456')) +
2 * relation.issubset(set('789')))
return ans
def clean_related_group(self, related_group, group, val):
donottouch = map(itemgetter(1), group.cells)
for i, cell in related_group.cells:
if cell not in donottouch:
cell.eliminate_possibilities(val)
args = (val, group.group_kind, group.id_num + 1,
related_group.group_kind, related_group.id_num + 1)
print(('The value %s in %s #%s has to be placed in cells that'
' are in order, so the other cells in %s #%s cannot '
'contain them. Eliminating those possibilities.' % args))
def relate_groups(self):
for i, group in enumerate(self.groups):
for n in xrange(1, 10):
relation, n = group.could_relate(n)
if not relation:
continue
# grab what squares it relates to and eliminate possibilites
gtype, num = self.identify_group(i)
gtype = {0: 'row', 1: 'col', 2: 'sq3'}[gtype]
related_index = self.get_related_group(gtype, num, relation)
# print ('I am %s number %s, interesting value is %s'
# ' and it relates to group %s') % (gtype, num + 1, n,
# related_index)
related_group = self.groups[related_index]
self.clean_related_group(related_group, group, n)
def solve_single_pass_no_relating(self, explain=True):
for group in self.groups:
for n in xrange(1, 4):
group.fit(n, explain)
group.spot(n, explain)
def get_sudoku_table(table):
return SudokuTable([map(SudokuCell, row) for row in table])
if __name__ == '__main__':
easy = [
[None, None, 5, None, None, 3, 1, 4, None],
[None, 7, None, None, 2, None, None, None, 5],
[None, None, 2, None, None, 1, None, None, None],
[2, None, None, None, 3, None, None, 5, None],
[9, 6, None, None, None, None, None, 2, 8],
[None, 5, None, None, 7, None, None, None, 3],
[None, None, None, 3, None, None, 6, None, None],
[4, None, None, None, 5, None, None, 8, None],
[None, 8, 1, 4, None, None, 5, None, None]
]
extreme = [
[2, None, None, None, 9, None, None, None, 1],
[None, None, 8, 1, None, 7, 2, None, None],
[None, None, None, None, None, None, None, None, None],
[4, 8, None, 6, None, 3, None, 1, 9],
[None, None, 3, None, None, None, 7, None, None],
[9, 2, None, 7, None, 1, None, 4, 6],
[None, None, None, None, None, None, None, None, None],
[None, None, 2, 8, None, 5, 1, None, None],
[7, None, None, None, 4, None, None, None, 8],
]
extreme2 = [
[None, None, 1, None, None, None, 3, None, None],
[None, None, 3, None, 7, None, 8, None, None],
[6, 7, None, None, None, None, None, 9, 4],
[2, None, None, None, 5, None, None, None, 3],
[None, 5, None, 9, None, 3, None, 8, None],
[7, None, None, None, 6, None, None, None, 9],
[8, 2, None, None, None, None, None, 3, 7],
[None, None, 5, None, 8, None, 6, None, None],
[None, None, 7, None, None, None, 9, None, None],
]
extreme3 = [
[None, None, 5, None, None, None, 7, None, None],
[None, 9, None, 7, None, 1, None, 6, None],
[8, None, None, None, None, None, None, None, 5],
[None, 8, None, 9, None, 3, None, 2, None],
[None, None, None, None, 2, None, None, None, None],
[None, 7, None, 5, None, 6, None, 4, None],
[9, None, None, None, None, None, None, None, 1],
[None, 2, None, 6, None, 8, None, 9, None],
[None, None, 1, None, None, None, 4, None, None],
]
extreme4 = [
[6, 9, 8, 7, 2, 3, 1, 5, 4],
[2, 3, 7, 4, 5, 1, 9, 8, 6],
[1, 4, 5, 8, 6, 9, None, 2, None],
[None, 5, None, 6, None, None, None, 9, None],
[None, None, None, 3, None, 2, None, None, None],
[None, 8, None, 5, None, 4, None, 7, None],
[8, None, 9, 2, 4, 6, None, 3, None],
[5, None, None, 9, 3, None, None, None, 2],
[4, 2, 3, 1, None, 5, None, 6, 9],
]
# XXX: Our current tools are not sufficient to solve the following
extreme5 = [
[9, 8, None, 3, 7, 5, 1, None, 2],
[2, 7, None, None, None, 8, 5, 3, None],
[3, 5, None, None, None, 2, 8, None, 7],
[5, 6, 3, 2, 9, None, 7, None, 8],
[7, None, 8, 5, 6, 3, 9, 2, None],
[None, 2, 9, 7, 8, None, 3, 5, 6],
[8, None, 2, 4, 5, 7, 6, None, 3],
[None, None, 5, 8, 3, 6, 2, 7, None],
[6, 3, 7, 1, 2, 9, 4, 8, 5]
]
weird = [
[None, None, None, None, None, 6, None, None, None],
[None, 5, 9, None, None, None, None, None, 8],
[2, None, None, None, None, 8, None, None, None],
[None, 4, 5, None, None, None, None, None, None],
[None, None, 3, None, None, None, None, None, None],
[None, None, 6, None, None, 3, None, 5, 4],
[None, None, None, 3, 2, 5, None, None, 6],
[None, None, None, None, None, None, None, None, None],
[None, None, None, None, None, None, None, None, None],
] # from http://norvig.com/sudoku.html
no_sol = [
[None, None, None, None, None, 5, None, 8, None],
[None, None, None, 6, None, 1, None, 4, 3],
[None, None, None, None, None, None, None, None, None],
[None, 1, None, 5, None, None, None, None, None],
[None, None, None, 1, None, 6, None, None, None],
[3, None, None, None, None, None, None, None, 5],
[5, 3, None, None, None, None, None, 6, 1],
[None, None, None, None, None, None, None, None, None],
[None, None, None, None, None, None, None, None, None],
]
taylan = [
[None, 4, None, None, None, None, None, 6, 9],
[6, 3, None, 7, None, 9, 2, None, 5],
[None, 9, 2, None, None, None, 8, None, None],
[4, 5, 7, 2, 6, 8, 9, None, None],
[9, None, None, 3, 7, 1, 5, 2, 4],
[2, 1, 3, 4, 9, 5, 6, None, None],
[None, 7, 9, None, None, None, 1, None, None],
[3, None, None, 1, None, 7, 4, 9, 2],
[1, 2, 4, 9, None, None, None, 5, None],
]
metindayi = [
[None, None, 2, None, None, 8, 5, None, None],
[None, None, None, 7, None, 2, None, 8, 9],
[None, None, None, None, None, None, 3, None, None],
[None, None, None, None, None, None, 8, 3, None],
[9, None, None, 1, None, 6, None, None, 4],
[None, 8, 1, None, None, None, None, None, None],
[None, None, 6, None, None, None, None, None, None],
[3, 2, None, 6, None, 9, None, None, None],
[None, None, 7, 5, None, None, 1, None, None],
]
metindayi2 = [
[None, None, 3, 2, None, None, None, 6, None],
[5, None, None, 3, None, None, None, None, 1],
[None, 4, 7, None, None, None, None, None, None],
[None, None, None, None, 8, 1, None, None, 2],
[None, 6, None, None, None, None, None, 9, None],
[1, None, None, 4, 3, None, None, None, None],
[None, None, None, None, None, None, 5, 7, None],
[7, None, None, None, None, 8, None, None, 6],
[None, 9, None, None, None, 7, 4, None, None]
]
S = get_sudoku_table(weird)
S.solve()