-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
53 lines (47 loc) · 2.06 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from multiprocessing.dummy import freeze_support
import torch
import numpy as np
import cv2
import os
from data import RetreiveTestData, TestDatasetLoader
from torch.utils.data import DataLoader
from EvaluateSOD import Evaluator
import torch.nn.functional as F
device = torch.device('cuda' if torch.cuda.is_available else "cpu")
class ModelTesting():
def __init__(self, model, test_loader, output_root, gt_root, dataset_name):
self.dataset_name = dataset_name
self.model = model
self.model.eval()
self.loader = test_loader
self.output_path = output_root
self.gt_root = gt_root + "/Test/Labels"
self.prediction()
self.evaluate()
def prediction(self):
for iter, (X, depth, width, height, _, name) in enumerate(self.loader):
X = X.to(device)
depth = depth.to(device)
pred = self.model.forward(X, depth)
pred = F.upsample(pred, size=[width, height], mode='bilinear', align_corners=False)
output = pred.sigmoid().data.cpu().numpy().squeeze()
# output = torch.squeeze(pred, 0)
# output = output.detach().cpu().numpy()
output = output.dot(255)
output *= output.max() / 255.0
# output = np.transpose(output, (1, 2, 0))
image_name , _ = name[0].split('.')
output_path = self.output_path + image_name + '.png'
print ("Saving Image at.. ", output_path)
cv2.imwrite(output_path, output)
def evaluate(self):
print (self.output_path, self.gt_root)
eval_data = TestDatasetLoader(self.output_path, self.gt_root)
eval_loader = DataLoader(eval_data)
eval = Evaluator(eval_loader)
mae, fmeasure, emeasure, smeasure = eval.execute()
logfile = 'results/Testing_RGBD.txt'
with open(logfile, 'a+') as f:
f.write(self.dataset_name + "\tMAE: " + str(mae) + ", FMeasure: " + str(fmeasure) + ", EMeasure: " + str(
emeasure) + ", SMeasure: " + str(fmeasure) + "\n")
print ("Testing done")