-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEvaluateSOD.py
234 lines (205 loc) · 7.9 KB
/
EvaluateSOD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import time
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
from data import TestDatasetLoader
import torch.nn.functional as F
device = torch.device('cuda' if torch.cuda.is_available else "cpu")
class Evaluator():
def __init__(self, data_loader):
super(Evaluator, self).__init__()
self.data_loader = data_loader
def execute(self):
print ("Computing MAE... ")
mae = self.Eval_mae()
print("Computing FMeasure... ")
fmeasure = self.Eval_fmeasure()
print("Computing EMeasure... ")
emeasure = self.Eval_Emeasure()
print("Computing SMeasure... ")
smeasure = self.Eval_Smeasure()
return round(mae,3), round(fmeasure,3), round(emeasure,3), round(smeasure,3)
def Eval_mae(self):
# print('eval[MAE]:{} dataset with {} method.'.format(self.dataset, self.method))
avg_mae, img_num = 0.0, 0.0
with torch.no_grad():
trans = transforms.Compose([transforms.ToTensor()])
for pred, gt in self.data_loader:
pred = pred.to(device)
gt = gt.to(device)
mea = torch.abs(pred - gt).mean()
if mea == mea: # for Nan
avg_mae += mea
img_num += 1.0
avg_mae /= img_num
return avg_mae.item()
def Eval_fmeasure(self):
# print('eval[FMeasure]:{} dataset with {} method.'.format(self.dataset, self.method))
beta2 = 0.3
avg_f, img_num = 0.0, 0.0
with torch.no_grad():
for pred, gt in self.data_loader:
pred = pred.to(device)
gt = gt.to(device)
prec, recall = self._eval_pr(pred, gt, 255)
f_score = (1 + beta2) * prec * recall / (beta2 * prec + recall)
f_score[f_score != f_score] = 0 # for Nan
avg_f += f_score
img_num += 1.0
score = avg_f / img_num
return score.max().item()
def Eval_Emeasure(self):
# print('eval[EMeasure]:{} dataset with {} method.'.format(self.dataset, self.method))
avg_e, img_num = 0.0, 0.0
with torch.no_grad():
scores = torch.zeros(255).to(device)
for pred, gt in self.data_loader:
pred = pred.to(device)
gt = gt.to(device)
gt = gt.to(device)
scores += self._eval_e(pred, gt, 255)
img_num += 1.0
scores /= img_num
return scores.max().item()
def Eval_Smeasure(self):
# print('eval[SMeasure]:{} dataset with {} method.'.format(self.dataset, self.method))
alpha, avg_q, img_num = 0.5, 0.0, 0.0
with torch.no_grad():
for pred, gt in self.data_loader:
pred = pred.to(device)
gt = gt.to(device)
gt = gt.to(device)
y = gt.mean()
if y == 0:
x = pred.mean()
Q = 1.0 - x
elif y == 1:
x = pred.mean()
Q = x
else:
gt[gt >= 0.5] = 1
gt[gt < 0.5] = 0
# print(self._S_object(pred, gt), self._S_region(pred, gt))
Q = alpha * self._S_object(pred, gt) + (1 - alpha) * self._S_region(pred, gt)
if Q.item() < 0:
Q = torch.FloatTensor([0.0])
img_num += 1.0
avg_q += Q.item()
avg_q /= img_num
return avg_q
def LOG(self, output):
with open(self.logfile, 'a') as f:
f.write(output)
def _eval_e(self, y_pred, y, num):
score = torch.zeros(num).to(device)
thlist = torch.linspace(0, 1 - 1e-10, num).to(device)
for i in range(num):
y_pred_th = (y_pred >= thlist[i]).float()
fm = y_pred_th - y_pred_th.mean()
gt = y - y.mean()
align_matrix = 2 * gt * fm / (gt * gt + fm * fm + 1e-20)
enhanced = ((align_matrix + 1) * (align_matrix + 1)) / 4
score[i] = torch.sum(enhanced) / (y.numel() - 1 + 1e-20)
return score
def _eval_pr(self, y_pred, y, num):
prec, recall = torch.zeros(num).to(device), torch.zeros(num).to(device)
thlist = torch.linspace(0, 1 - 1e-10, num).to(device)
for i in range(num):
y_temp = (y_pred >= thlist[i]).float()
tp = (y_temp * y).sum()
prec[i], recall[i] = tp / (y_temp.sum() + 1e-20), tp / (y.sum() + 1e-20)
return prec, recall
def _S_object(self, pred, gt):
fg = torch.where(gt == 0, torch.zeros_like(pred), pred)
bg = torch.where(gt == 1, torch.zeros_like(pred), 1 - pred)
o_fg = self._object(fg, gt)
o_bg = self._object(bg, 1 - gt)
u = gt.mean()
Q = u * o_fg + (1 - u) * o_bg
return Q
def _object(self, pred, gt):
temp = pred[gt == 1]
x = temp.mean()
sigma_x = temp.std()
score = 2.0 * x / (x * x + 1.0 + sigma_x + 1e-20)
return score
def _S_region(self, pred, gt):
X, Y = self._centroid(gt)
gt1, gt2, gt3, gt4, w1, w2, w3, w4 = self._divideGT(gt, X, Y)
p1, p2, p3, p4 = self._dividePrediction(pred, X, Y)
Q1 = self._ssim(p1, gt1)
Q2 = self._ssim(p2, gt2)
Q3 = self._ssim(p3, gt3)
Q4 = self._ssim(p4, gt4)
Q = w1 * Q1 + w2 * Q2 + w3 * Q3 + w4 * Q4
# print(Q)
return Q
def _centroid(self, gt):
rows, cols = gt.size()[-2:]
gt = gt.view(rows, cols)
if gt.sum() == 0:
X = torch.eye(1).to(device) * round(cols / 2)
Y = torch.eye(1).to(device) * round(rows / 2)
else:
total = gt.sum()
i = torch.from_numpy(np.arange(0, cols)).to(device).float()
j = torch.from_numpy(np.arange(0, rows)).to(device).float()
X = torch.round((gt.sum(dim=0) * i).sum() / total)
Y = torch.round((gt.sum(dim=1) * j).sum() / total)
return X.long(), Y.long()
def _divideGT(self, gt, X, Y):
h, w = gt.size()[-2:]
area = h * w
gt = gt.view(h, w)
LT = gt[:Y, :X]
RT = gt[:Y, X:w]
LB = gt[Y:h, :X]
RB = gt[Y:h, X:w]
X = X.float()
Y = Y.float()
w1 = X * Y / area
w2 = (w - X) * Y / area
w3 = X * (h - Y) / area
w4 = 1 - w1 - w2 - w3
return LT, RT, LB, RB, w1, w2, w3, w4
def _dividePrediction(self, pred, X, Y):
h, w = pred.size()[-2:]
pred = pred.view(h, w)
LT = pred[:Y, :X]
RT = pred[:Y, X:w]
LB = pred[Y:h, :X]
RB = pred[Y:h, X:w]
return LT, RT, LB, RB
def _ssim(self, pred, gt):
gt = gt.float()
h, w = pred.size()[-2:]
N = h * w
x = pred.mean()
y = gt.mean()
sigma_x2 = ((pred - x) * (pred - x)).sum() / (N - 1 + 1e-20)
sigma_y2 = ((gt - y) * (gt - y)).sum() / (N - 1 + 1e-20)
sigma_xy = ((pred - x) * (gt - y)).sum() / (N - 1 + 1e-20)
aplha = 4 * x * y * sigma_xy
beta = (x * x + y * y) * (sigma_x2 + sigma_y2)
if aplha != 0:
Q = aplha / (beta + 1e-20)
elif aplha == 0 and beta == 0:
Q = 1.0
else:
Q = 0
return Q
# from multiprocessing.dummy import freeze_support
# if __name__ == '__main__':
# freeze_support()
#
# predictions_root = r"C:\Users\user02\Documents\GitHub\EfficientSOD2\results\DUT-RGBD/"
# gt_root = r"D:\My Research\Datasets\Saliency Detection\RGBD\DUT-RGBD\Test\Labels/"
# test_data = TestDatasetLoader(predictions_root, gt_root)
# test_loader = DataLoader(test_data)
#
#
# eval = Evaluator(test_loader)
# print (eval.execute())