-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_amazon.py
301 lines (253 loc) · 10.1 KB
/
preprocess_amazon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import gzip
import json
import os
from tqdm import tqdm
import ssl
from collections import defaultdict
from param import parse_args
import torch
import html
import re
amazon_dataset2fullname = {
'Beauty': 'All_Beauty',
'Fashion': 'AMAZON_FASHION',
'Appliances': 'Appliances',
'Arts': 'Arts_Crafts_and_Sewing',
'Automotive': 'Automotive',
'Books': 'Books',
'CDs': 'CDs_and_Vinyl',
'Cell': 'Cell_Phones_and_Accessories',
'Clothing': 'Clothing_Shoes_and_Jewelry',
'Music': 'Digital_Music',
'Electronics': 'Electronics',
'Gift': 'Gift_Cards',
'Food': 'Grocery_and_Gourmet_Food',
'Home': 'Home_and_Kitchen',
'Scientific': 'Industrial_and_Scientific',
'Kindle': 'Kindle_Store',
'Luxury': 'Luxury_Beauty',
'Magazine': 'Magazine_Subscriptions',
'Movies': 'Movies_and_TV',
'Instruments': 'Musical_Instruments',
'Office': 'Office_Products',
'Garden': 'Patio_Lawn_and_Garden',
'Pantry': 'Prime_Pantry',
'Pet': 'Pet_Supplies',
'Software': 'Software',
'Sports': 'Sports_and_Outdoors',
'Tools': 'Tools_and_Home_Improvement',
'Toys': 'Toys_and_Games',
'Games': 'Video_Games',
}
def clean_text(raw_text):
if isinstance(raw_text, list):
cleaned_text = ' '.join(raw_text)
elif isinstance(raw_text, dict):
cleaned_text = str(raw_text)
else:
cleaned_text = raw_text
cleaned_text = html.unescape(cleaned_text)
cleaned_text = re.sub(r'["\n\r]*', '', cleaned_text)
index = -1
while -index < len(cleaned_text) and cleaned_text[index] == '.':
index -= 1
index += 1
if index == 0:
cleaned_text = cleaned_text + '.'
else:
cleaned_text = cleaned_text[:index] + '.'
if len(cleaned_text) >= 2000:
cleaned_text = ''
return cleaned_text
def parse(path):
g = gzip.open(path, 'r')
for l in g:
yield json.loads(l)
def check_file(dataset):
if not os.path.exists(f"./dataset/Ratings/{dataset}.csv") or not os.path.exists(f"./dataset/Metadata//meta_{dataset}.json.gz"):
raise NotImplementedError('Missing dataset!')
def read_meta(dataset):
meta_datas = {}
meta_file = f'./dataset/Metadata/meta_{dataset}.json.gz'
for info in tqdm(parse(meta_file), desc='Loading meta'):
info['dataset'] = dataset
meta_datas[info['asin']] = info
return meta_datas
def read_review(dataset, meta_data, ratio=1.0):
review_datas = {}
# older Amazon
data_file = f'./dataset/Ratings/{dataset}.csv'
total_items = meta_data.keys()
# latest Amazon
with open(data_file, 'r') as fp:
for line in tqdm(fp, desc='Loading ratings'):
try:
item, user, rating, time = line.strip().split(',')
if user not in review_datas.keys():
review_datas[user] = []
if [item, rating, dataset, time] in review_datas[user]:
continue
review_datas[user].append([item, rating, dataset, time])
except ValueError:
print(line)
new_review_datas = {}
raw_inters = 0
for user in tqdm(review_datas.keys(), desc='Delete no meta'):
raw_inters += len(review_datas[user])
new_review_datas[user] = []
for inter in review_datas[user]:
if inter[0] in total_items:
new_review_datas[user].append(inter)
print(f"Raw inters:{raw_inters}")
review_datas = new_review_datas
meta_filter_inters = 0
for user in review_datas.keys():
meta_filter_inters += len(review_datas[user])
print(f"Meta filter inters:{meta_filter_inters}")
import random
random.seed(2023)
keys = list(review_datas.keys())
selected_user = random.sample(keys, int(len(keys) * ratio))
selected_review_data = {}
for user in selected_user:
selected_review_data[user] = review_datas[user]
return selected_review_data
def cal_user_item_count(review_datas):
user_count = defaultdict(int)
item_count = defaultdict(int)
for user, user_items in tqdm(review_datas.items(), desc='cal user item count'):
user_count[user] += len(user_items)
for item in user_items:
item_count[item[0]] += 1
assert sum(user_count.values()) == sum(item_count.values())
return user_count, item_count
def k_core(review_datas, user_k=5, item_k=5):
new_review_datas = defaultdict(list)
epoch = 0
while True:
start_user_count, start_item_count = cal_user_item_count(review_datas)
print(
f"Epoch:{epoch} five core START | User Count:{len(start_user_count)} | Item Count:{len(start_item_count)} | Reviews:{sum(start_user_count.values())}")
# user five-core
users = list(review_datas.keys())
for user in users:
if len(review_datas[user]) < user_k:
del review_datas[user]
# item five-core
users = list(review_datas.keys())
item_count = defaultdict(int)
for user in users:
for item in review_datas[user]:
item_count[item[0]] += 1
for user in users:
for item in review_datas[user]:
if item_count[item[0]] >= item_k:
new_review_datas[user].append(item)
review_datas = new_review_datas
new_review_datas = defaultdict(list)
end_user_count, end_item_count = cal_user_item_count(review_datas)
print(
f"Epoch:{epoch} END | User Count:{len(end_user_count)} | Item Count:{len(end_item_count)} | Reviews:{sum(end_user_count.values())}")
if len(start_user_count) == len(end_user_count) and len(start_item_count) == len(end_item_count):
break
epoch += 1
print(
f"Finish 5-core | Users:{len(end_user_count)} | Items:{len(end_item_count)} | Reviews:{sum(end_user_count.values())}")
return review_datas
def sort_review_by_time(review_datas):
for user in tqdm(review_datas.keys(), desc='Sorting by time'):
review_datas[user].sort(key=lambda x: (x[-1], x[0], x[1]))
dup_inter = 0
new_review_datas = {}
for user in tqdm(review_datas.keys(), desc='Deleting duplicate interaction'):
user_inters = [review_datas[user][0]]
for inter_idx in range(1, len(review_datas[user])):
if review_datas[user][inter_idx] != user_inters[-1]:
user_inters.append(review_datas[user][inter_idx])
else:
dup_inter += 1
new_review_datas[user] = user_inters
print(f"Delete duplicate {dup_inter} interactions!")
return new_review_datas
def clean_meta(review_datas, meta_datas):
items = set()
for user, user_items in review_datas.items():
for item in user_items:
items.add(item[0])
for meta_item in list(meta_datas.keys()):
if meta_item not in items:
del meta_datas[meta_item]
return meta_datas
def re_item_id(meta_datas):
items_asin = meta_datas.keys()
items_id = list(range(1, len(items_asin) + 1))
asin2iid = {}
iid2asin = {}
for asin, iid in zip(items_asin, items_id):
asin2iid[asin] = iid
iid2asin[iid] = asin
return asin2iid, iid2asin
def re_user_id(review_datas):
new_review_datas = {}
uid2rid = {}
rid2uid = {}
for user, user_inters in review_datas.items():
new_review_datas[user] = user_inters
uid2rid[len(uid2rid)+1] = user
rid2uid[user] = len(rid2uid)+1
return new_review_datas, uid2rid, rid2uid
def transfer_review_iid(review_datas, asin2iid):
for user in review_datas.keys():
for inter in review_datas[user]:
inter[0] = asin2iid[inter[0]]
return review_datas
def get_item_text_info(meta_datas, iid2asin):
text_list = ["None"]
for i in range(1, len(iid2asin) + 1):
item_meta = meta_datas[iid2asin[i]]
title = item_meta['title'] if ('title' in item_meta.keys()) and item_meta['title'] else "None"
price = item_meta['price'] if ('price' in item_meta.keys()) and item_meta['price'] else "None"
category = item_meta['category'] if ('category' in item_meta.keys()) and item_meta['category'] else "None"
brand = item_meta['brand'] if ('brand' in item_meta.keys()) and item_meta['brand'] else "None"
item_text = f"{title}; {category}; {brand};"
text_list.append(item_text)
return text_list
def collate_fn(batch_text, tokenizer):
max_len = max([len(x['input_ids']) for x in batch_text])
batch_ids = []
batch_position = []
batch_attention = []
for text in batch_text:
pad_len = max_len - len(text['input_ids'])
batch_ids.append([tokenizer.pad_token_id] * pad_len + text['input_ids'])
batch_position.append([0] * pad_len + list(range(len(text['input_ids']))))
batch_attention.append([0] * pad_len + [1] * len(text['input_ids']))
return torch.LongTensor(batch_ids), torch.LongTensor(batch_position), torch.LongTensor(batch_attention)
def save_pickle(datas, dataset, name):
import pickle
os.makedirs(f'{args.data_path}/{dataset}', exist_ok=True)
pickle.dump(datas, open(f"{args.data_path}/{dataset}/{name}.pkl", 'wb'))
def load_pickle(dataset, name):
import pickle
return pickle.load(open(f"{args.data_path}/{dataset}/{name}.pkl", 'rb'))
def process(dataset):
dataset_full = amazon_dataset2fullname[dataset]
check_file(dataset_full)
meta_datas = read_meta(dataset_full)
review_datas = read_review(dataset_full, meta_datas, args.ratio)
review_datas = k_core(review_datas, args.user_k, args.item_k)
meta_datas = clean_meta(review_datas, meta_datas)
review_datas = sort_review_by_time(review_datas)
asin2iid, iid2asin = re_item_id(meta_datas)
review_datas, uid2rid, rid2uid = re_user_id(review_datas)
review_datas = transfer_review_iid(review_datas, asin2iid)
save_pickle(meta_datas, f"{dataset}", "meta_datas")
save_pickle(review_datas, f"{dataset}", "review_datas")
save_pickle(asin2iid, f"{dataset}", "asin2iid")
save_pickle(iid2asin, f"{dataset}", "iid2asin")
save_pickle(uid2rid, f"{dataset}", "uid2rid")
save_pickle(rid2uid, f"{dataset}", "rid2uid")
if __name__ == '__main__':
args = parse_args()
process(args.dataset)
dataset = args.dataset