forked from yueyuzhao/gyrophone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gyro_records.m
99 lines (79 loc) · 2.81 KB
/
test_gyro_records.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function [timestamps, gyro, reconstructed] = ...
test_gyro_records(sample_name, ref_signal_name)
% Test with multiple Gyro samples of a signal
GYRO_REC_DIR = '../data/gyro_results/Nexus';
global GYRO_FS;
GYRO_FS = 200;
% n = floor(fs / GYRO_FS);
% ref_signal_name = 'ref_signal';
% sample_name = 'triang-50-100_100-200hz';
DEVICES = {'00a697fa469633a5', '0094e779d7d1841f', '015d3fb673180c13', '04dc22d4dad7e4ce'};
NUM_DEVICES = 2; % length(DEVICES);
fs = NUM_DEVICES * GYRO_FS;
REFINE_OFFSET = true;
REFINE_TIMESKEW = true;
USE_APPROX_OFFSET = true;
reconstruction_func = @sp_eldar_impl;
dim = 1; % Gyro dimension to use
timestamps = cell(NUM_DEVICES, 1);
gyro = cell(NUM_DEVICES, 1);
offset = zeros(1, NUM_DEVICES);
% We resample the reference signal to 1xGYRO_FS since this is the
% effective frequency a single devices can capture
[~, ~, ref_signal_ds] = read_signal(ref_signal_name, 1);
ref_signal_fs = GYRO_FS;
original_signal_name = sample_name;
[~, ~, orig_sig_ds] = read_signal(original_signal_name, NUM_DEVICES);
%% Read recorded samples
all_rec_plot = figure;
title('All recordings');
hold all;
for i = 1:NUM_DEVICES
filename = [GYRO_REC_DIR '/' DEVICES{i} '/' sample_name];
[timestamps{i}, gyro{i}] = read_samples_file(filename);
display([num2str(length(gyro{i})) ' samples in Gyro ' num2str(i) ' recording']);
gyro{i} = normalization( gyro{i}(:, dim) );
figure;
fft_plot(gyro{i}, GYRO_FS);
title(['Gyro ' num2str(i) ' samples']);
figure(all_rec_plot);
plot(gyro{i});
end
legend(DEVICES{1:NUM_DEVICES});
%% Find approximate offset based on timestamps
approximate_offset = get_approximate_offset(timestamps, GYRO_FS)';
display(approximate_offset);
if USE_APPROX_OFFSET
offset = approximate_offset;
else
%% Find the offset at which the reference signal appears in
% each recording
for i = 1:NUM_DEVICES
offset(i) = find_offset(gyro{i}, GYRO_FS, ref_signal_ds, ref_signal_fs);
end
% set minimal offset to 0 - prevent negative offsets
offset = offset - min(offset);
display(offset);
end
if REFINE_OFFSET
offset = refine_offset(fs, offset, 10, NUM_DEVICES, gyro, orig_sig_ds, ...
reconstruction_func);
end
time_skew = offset_to_timeskew(offset, NUM_DEVICES, ref_signal_fs);
trimmed = trim_signals(gyro, offset);
if REFINE_TIMESKEW
time_skew = refine_timeskew(time_skew, NUM_DEVICES, trimmed, ...
orig_sig_ds, reconstruction_func);
end
[reconstructed, reconstructed_fs] = reconstruction_func(GYRO_FS, trimmed, time_skew);
figure;
fft_plot(reconstructed, reconstructed_fs);
title('Merged from Gyro recordings');
playsound(reconstructed, reconstructed_fs);
% bp = fir1(48, [0.1 0.8]);
% filtered = filter(bp, 1, reconstructed);
% figure;
% fft_plot(filtered, fs);
% title('Filtered low frequencies');
% playsound(filtered, reconstructed_fs);
end